false

Modern Computational Methods in Reinsurance Optimization: From Simulated Annealing to Quantum Branch & Bound

Modern Computational Methods in Reinsurance Optimization: From Simulated Annealing to Quantum Branch & Bound ArXiv ID: 2504.16530 “View on arXiv” Authors: George Woodman, Ruben S. Andrist, Thomas Häner, Damian S. Steiger, Martin J. A. Schuetz, Helmut G. Katzgraber, Marcin Detyniecki Abstract We propose and implement modern computational methods to enhance catastrophe excess-of-loss reinsurance contracts in practice. The underlying optimization problem involves attachment points, limits, and reinstatement clauses, and the objective is to maximize the expected profit while considering risk measures and regulatory constraints. We study the problem formulation, paving the way for practitioners, for two very different approaches: A local search optimizer using simulated annealing, which handles realistic constraints, and a branch & bound approach exploring the potential of a future speedup via quantum branch & bound. On the one hand, local search effectively generates contract structures within several constraints, proving useful for complex treaties that have multiple local optima. On the other hand, although our branch & bound formulation only confirms that solving the full problem with a future quantum computer would require a stronger, less expensive bound and substantial hardware improvements, we believe that the designed application-specific bound is sufficiently strong to serve as a basis for further works. Concisely, we provide insurance practitioners with a robust numerical framework for contract optimization that handles realistic constraints today, as well as an outlook and initial steps towards an approach which could leverage quantum computers in the future. ...

April 23, 2025 · 2 min · Research Team

Time-limited Metaheuristics for Cardinality-constrained Portfolio Optimisation

Time-limited Metaheuristics for Cardinality-constrained Portfolio Optimisation ArXiv ID: 2307.04045 “View on arXiv” Authors: Unknown Abstract A financial portfolio contains assets that offer a return with a certain level of risk. To maximise returns or minimise risk, the portfolio must be optimised - the ideal combination of optimal quantities of assets must be found. The number of possible combinations is vast. Furthermore, to make the problem realistic, constraints can be imposed on the number of assets held in the portfolio and the maximum proportion of the portfolio that can be allocated to an asset. This problem is unsolvable using quadratic programming, which means that the optimal solution cannot be calculated. A group of algorithms, called metaheuristics, can find near-optimal solutions in a practical computing time. These algorithms have been successfully used in constrained portfolio optimisation. However, in past studies the computation time of metaheuristics is not limited, which means that the results differ in both quality and computation time, and cannot be easily compared. This study proposes a different way of testing metaheuristics, limiting their computation time to a certain duration, yielding results that differ only in quality. Given that in some use cases the priority is the quality of the solution and in others the speed, time limits of 1, 5 and 25 seconds were tested. Three metaheuristics - simulated annealing, tabu search, and genetic algorithm - were evaluated on five sets of historical market data with different numbers of assets. Although the metaheuristics could not find a competitive solution in 1 second, simulated annealing found a near-optimal solution in 5 seconds in all but one dataset. The lowest quality solutions were obtained by genetic algorithm. ...

July 8, 2023 · 2 min · Research Team