false

Correlation-diversified portfolio construction by finding maximum independent set in large-scale market graph

Correlation-diversified portfolio construction by finding maximum independent set in large-scale market graph ArXiv ID: 2308.04769 “View on arXiv” Authors: Unknown Abstract Correlation-diversified portfolios can be constructed by finding the maximum independent sets (MISs) in market graphs with edges corresponding to correlations between two stocks. The computational complexity to find the MIS increases exponentially as the size of the market graph increases, making the MIS selection in a large-scale market graph difficult. Here we construct a diversified portfolio by solving the MIS problem for a large-scale market graph with a combinatorial optimization solver (an Ising machine) based on a quantum-inspired algorithm called simulated bifurcation (SB) and investigate the investment performance of the constructed portfolio using long-term historical market data. Comparisons using stock universes of various sizes [“TOPIX 100, Nikkei 225, TOPIX 1000, and TOPIX (including approximately 2,000 constituents)”] show that the SB-based solver outperforms conventional MIS solvers in terms of computation-time and solution-accuracy. By using the SB-based solver, we optimized the parameters of a MIS portfolio strategy through iteration of the backcast simulation that calculates the performance of the MIS portfolio strategy based on a large-scale universe covering more than 1,700 Japanese stocks for a long period of 10 years. It has been found that the best MIS portfolio strategy (Sharpe ratio = 1.16, annualized return/risk = 16.3%/14.0%) outperforms the major indices such as TOPIX (0.66, 10.0%/15.2%) and MSCI Japan Minimum Volatility Index (0.64, 7.7%/12.1%) for the period from 2013 to 2023. ...

August 9, 2023 · 2 min · Research Team

Real-time Trading System based on Selections of Potentially Profitable, Uncorrelated, and Balanced Stocks by NP-hard Combinatorial Optimization

Real-time Trading System based on Selections of Potentially Profitable, Uncorrelated, and Balanced Stocks by NP-hard Combinatorial Optimization ArXiv ID: 2307.06339 “View on arXiv” Authors: Unknown Abstract Financial portfolio construction problems are often formulated as quadratic and discrete (combinatorial) optimization that belong to the nondeterministic polynomial time (NP)-hard class in computational complexity theory. Ising machines are hardware devices that work in quantum-mechanical/quantum-inspired principles for quickly solving NP-hard optimization problems, which potentially enable making trading decisions based on NP-hard optimization in the time constraints for high-speed trading strategies. Here we report a real-time stock trading system that determines long(buying)/short(selling) positions through NP-hard portfolio optimization for improving the Sharpe ratio using an embedded Ising machine based on a quantum-inspired algorithm called simulated bifurcation. The Ising machine selects a balanced (delta-neutral) group of stocks from an $N$-stock universe according to an objective function involving maximizing instantaneous expected returns defined as deviations from volume-weighted average prices and minimizing the summation of statistical correlation factors (for diversification). It has been demonstrated in the Tokyo Stock Exchange that the trading strategy based on NP-hard portfolio optimization for $N$=128 is executable with the FPGA (field-programmable gate array)-based trading system with a response latency of 164 $μ$s. ...

July 12, 2023 · 2 min · Research Team