false

Event-Aware Sentiment Factors from LLM-Augmented Financial Tweets: A Transparent Framework for Interpretable Quant Trading

Event-Aware Sentiment Factors from LLM-Augmented Financial Tweets: A Transparent Framework for Interpretable Quant Trading ArXiv ID: 2508.07408 “View on arXiv” Authors: Yueyi Wang, Qiyao Wei Abstract In this study, we wish to showcase the unique utility of large language models (LLMs) in financial semantic annotation and alpha signal discovery. Leveraging a corpus of company-related tweets, we use an LLM to automatically assign multi-label event categories to high-sentiment-intensity tweets. We align these labeled sentiment signals with forward returns over 1-to-7-day horizons to evaluate their statistical efficacy and market tradability. Our experiments reveal that certain event labels consistently yield negative alpha, with Sharpe ratios as low as -0.38 and information coefficients exceeding 0.05, all statistically significant at the 95% confidence level. This study establishes the feasibility of transforming unstructured social media text into structured, multi-label event variables. A key contribution of this work is its commitment to transparency and reproducibility; all code and methodologies are made publicly available. Our results provide compelling evidence that social media sentiment is a valuable, albeit noisy, signal in financial forecasting and underscore the potential of open-source frameworks to democratize algorithmic trading research. ...

August 10, 2025 · 2 min · Research Team

Social Media Emotions and Market Behavior

Social Media Emotions and Market Behavior ArXiv ID: 2404.03792 “View on arXiv” Authors: Unknown Abstract I explore the relationship between investor emotions expressed on social media and asset prices. The field has seen a proliferation of models aimed at extracting firm-level sentiment from social media data, though the behavior of these models often remains uncertain. Against this backdrop, my study employs EmTract, an open-source emotion model, to test whether the emotional responses identified on social media platforms align with expectations derived from controlled laboratory settings. This step is crucial in validating the reliability of digital platforms in reflecting genuine investor sentiment. My findings reveal that firm-specific investor emotions behave similarly to lab experiments and can forecast daily asset price movements. These impacts are larger when liquidity is lower or short interest is higher. My findings on the persistent influence of sadness on subsequent returns, along with the insignificance of the one-dimensional valence metric, underscores the importance of dissecting emotional states. This approach allows for a deeper and more accurate understanding of the intricate ways in which investor sentiments drive market movements. ...

April 4, 2024 · 2 min · Research Team

Potential of ChatGPT in predicting stock market trends based on Twitter Sentiment Analysis

Potential of ChatGPT in predicting stock market trends based on Twitter Sentiment Analysis ArXiv ID: 2311.06273 “View on arXiv” Authors: Unknown Abstract The rise of ChatGPT has brought a notable shift to the AI sector, with its exceptional conversational skills and deep grasp of language. Recognizing its value across different areas, our study investigates ChatGPT’s capacity to predict stock market movements using only social media tweets and sentiment analysis. We aim to see if ChatGPT can tap into the vast sentiment data on platforms like Twitter to offer insightful predictions about stock trends. We focus on determining if a tweet has a positive, negative, or neutral effect on two big tech giants Microsoft and Google’s stock value. Our findings highlight a positive link between ChatGPT’s evaluations and the following days stock results for both tech companies. This research enriches our view on ChatGPT’s adaptability and emphasizes the growing importance of AI in shaping financial market forecasts. ...

October 13, 2023 · 2 min · Research Team

Desenvolvimento de modelo para predição de cotações de ação baseada em análise de sentimentos de tweets

Desenvolvimento de modelo para predição de cotações de ação baseada em análise de sentimentos de tweets ArXiv ID: 2309.06538 “View on arXiv” Authors: Unknown Abstract Training machine learning models for predicting stock market share prices is an active area of research since the automatization of trading such papers was available in real time. While most of the work in this field of research is done by training Neural networks based on past prices of stock shares, in this work, we use iFeel 2.0 platform to extract 19 sentiment features from posts obtained from microblog platform Twitter that mention the company Petrobras. Then, we used those features to train XBoot models to predict future stock prices for the referred company. Later, we simulated the trading of Petrobras’ shares based on the model’s outputs and determined the gain of R$88,82 (net) in a 250-day period when compared to a 100 random models’ average performance. ...

September 11, 2023 · 2 min · Research Team