false

Cryptocurrency Portfolio Management with Reinforcement Learning: Soft Actor--Critic and Deep Deterministic Policy Gradient Algorithms

Cryptocurrency Portfolio Management with Reinforcement Learning: Soft Actor–Critic and Deep Deterministic Policy Gradient Algorithms ArXiv ID: 2511.20678 “View on arXiv” Authors: Kamal Paykan Abstract This paper proposes a reinforcement learning–based framework for cryptocurrency portfolio management using the Soft Actor–Critic (SAC) and Deep Deterministic Policy Gradient (DDPG) algorithms. Traditional portfolio optimization methods often struggle to adapt to the highly volatile and nonlinear dynamics of cryptocurrency markets. To address this, we design an agent that learns continuous trading actions directly from historical market data through interaction with a simulated trading environment. The agent optimizes portfolio weights to maximize cumulative returns while minimizing downside risk and transaction costs. Experimental evaluations on multiple cryptocurrencies demonstrate that the SAC and DDPG agents outperform baseline strategies such as equal-weighted and mean–variance portfolios. The SAC algorithm, with its entropy-regularized objective, shows greater stability and robustness in noisy market conditions compared to DDPG. These results highlight the potential of deep reinforcement learning for adaptive and data-driven portfolio management in cryptocurrency markets. ...

November 16, 2025 · 2 min · Research Team

Predicting Liquidity-Aware Bond Yields using Causal GANs and Deep Reinforcement Learning with LLM Evaluation

Predicting Liquidity-Aware Bond Yields using Causal GANs and Deep Reinforcement Learning with LLM Evaluation ArXiv ID: 2502.17011 “View on arXiv” Authors: Unknown Abstract Financial bond yield forecasting is challenging due to data scarcity, nonlinear macroeconomic dependencies, and evolving market conditions. In this paper, we propose a novel framework that leverages Causal Generative Adversarial Networks (CausalGANs) and Soft Actor-Critic (SAC) reinforcement learning (RL) to generate high-fidelity synthetic bond yield data for four major bond categories (AAA, BAA, US10Y, Junk). By incorporating 12 key macroeconomic variables, we ensure statistical fidelity by preserving essential market properties. To transform this market dependent synthetic data into actionable insights, we employ a finetuned Large Language Model (LLM) Qwen2.5-7B that generates trading signals (BUY/HOLD/SELL), risk assessments, and volatility projections. We use automated, human and LLM evaluations, all of which demonstrate that our framework improves forecasting performance over existing methods, with statistical validation via predictive accuracy, MAE evaluation(0.103%), profit/loss evaluation (60% profit rate), LLM evaluation (3.37/5) and expert assessments scoring 4.67 out of 5. The reinforcement learning-enhanced synthetic data generation achieves the least Mean Absolute Error of 0.103, demonstrating its effectiveness in replicating real-world bond market dynamics. We not only enhance data-driven trading strategies but also provides a scalable, high-fidelity synthetic financial data pipeline for risk & volatility management and investment decision-making. This work establishes a bridge between synthetic data generation, LLM driven financial forecasting, and language model evaluation, contributing to AI-driven financial decision-making. ...

February 24, 2025 · 2 min · Research Team

Reinforcement Learning in Non-Markov Market-Making

Reinforcement Learning in Non-Markov Market-Making ArXiv ID: 2410.14504 “View on arXiv” Authors: Unknown Abstract We develop a deep reinforcement learning (RL) framework for an optimal market-making (MM) trading problem, specifically focusing on price processes with semi-Markov and Hawkes Jump-Diffusion dynamics. We begin by discussing the basics of RL and the deep RL framework used, where we deployed the state-of-the-art Soft Actor-Critic (SAC) algorithm for the deep learning part. The SAC algorithm is an off-policy entropy maximization algorithm more suitable for tackling complex, high-dimensional problems with continuous state and action spaces like in optimal market-making (MM). We introduce the optimal MM problem considered, where we detail all the deterministic and stochastic processes that go into setting up an environment for simulating this strategy. Here we also give an in-depth overview of the jump-diffusion pricing dynamics used, our method for dealing with adverse selection within the limit order book, and we highlight the working parts of our optimization problem. Next, we discuss training and testing results, where we give visuals of how important deterministic and stochastic processes such as the bid/ask, trade executions, inventory, and the reward function evolved. We include a discussion on the limitations of these results, which are important points to note for most diffusion models in this setting. ...

October 18, 2024 · 2 min · Research Team

Optimizing Portfolio with Two-Sided Transactions and Lending: A Reinforcement Learning Framework

Optimizing Portfolio with Two-Sided Transactions and Lending: A Reinforcement Learning Framework ArXiv ID: 2408.05382 “View on arXiv” Authors: Unknown Abstract This study presents a Reinforcement Learning (RL)-based portfolio management model tailored for high-risk environments, addressing the limitations of traditional RL models and exploiting market opportunities through two-sided transactions and lending. Our approach integrates a new environmental formulation with a Profit and Loss (PnL)-based reward function, enhancing the RL agent’s ability in downside risk management and capital optimization. We implemented the model using the Soft Actor-Critic (SAC) agent with a Convolutional Neural Network with Multi-Head Attention (CNN-MHA). This setup effectively manages a diversified 12-crypto asset portfolio in the Binance perpetual futures market, leveraging USDT for both granting and receiving loans and rebalancing every 4 hours, utilizing market data from the preceding 48 hours. Tested over two 16-month periods of varying market volatility, the model significantly outperformed benchmarks, particularly in high-volatility scenarios, achieving higher return-to-risk ratios and demonstrating robust profitability. These results confirm the model’s effectiveness in leveraging market dynamics and managing risks in volatile environments like the cryptocurrency market. ...

August 9, 2024 · 2 min · Research Team