false

Inferring Latent Market Forces: Evaluating LLM Detection of Gamma Exposure Patterns via Obfuscation Testing

Inferring Latent Market Forces: Evaluating LLM Detection of Gamma Exposure Patterns via Obfuscation Testing ArXiv ID: 2512.17923 “View on arXiv” Authors: Christopher Regan, Ying Xie Abstract We introduce obfuscation testing, a novel methodology for validating whether large language models detect structural market patterns through causal reasoning rather than temporal association. Testing three dealer hedging constraint patterns (gamma positioning, stock pinning, 0DTE hedging) on 242 trading days (95.6% coverage) of S&P 500 options data, we find LLMs achieve 71.5% detection rate using unbiased prompts that provide only raw gamma exposure values without regime labels or temporal context. The WHO-WHOM-WHAT causal framework forces models to identify the economic actors (dealers), affected parties (directional traders), and structural mechanisms (forced hedging) underlying observed market dynamics. Critically, detection accuracy (91.2%) remains stable even as economic profitability varies quarterly, demonstrating that models identify structural constraints rather than profitable patterns. When prompted with regime labels, detection increases to 100%, but the 71.5% unbiased rate validates genuine pattern recognition. Our findings suggest LLMs possess emergent capabilities for detecting complex financial mechanisms through pure structural reasoning, with implications for systematic strategy development, risk management, and our understanding of how transformer architectures process financial market dynamics. ...

December 8, 2025 · 2 min · Research Team

Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information

Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information ArXiv ID: 2407.21138 “View on arXiv” Authors: Unknown Abstract We present a dynamic hedging scheme for S&P 500 options, where rebalancing decisions are enhanced by integrating information about the implied volatility surface dynamics. The optimal hedging strategy is obtained through a deep policy gradient-type reinforcement learning algorithm. The favorable inclusion of forward-looking information embedded in the volatility surface allows our procedure to outperform several conventional benchmarks such as practitioner and smiled-implied delta hedging procedures, both in simulation and backtesting experiments. The outperformance is more pronounced in the presence of transaction costs. ...

July 30, 2024 · 2 min · Research Team