false

Index-Tracking Portfolio Construction and Rebalancing under Bayesian Sparse Modelling and Uncertainty Quantification

Index-Tracking Portfolio Construction and Rebalancing under Bayesian Sparse Modelling and Uncertainty Quantification ArXiv ID: 2512.22109 “View on arXiv” Authors: Dimitrios Roxanas Abstract We study the construction and rebalancing of sparse index-tracking portfolios from an operational research perspective, with explicit emphasis on uncertainty quantification and implementability. The decision variables are portfolio weights constrained to sum to one; the aims are to track a reference index closely while controlling the number of names and the turnover induced by rebalancing. We cast index tracking as a high-dimensional linear regression of index returns on constituent returns, and employ a sparsity-inducing Laplace prior on the weights. A single global shrinkage parameter controls the trade-off between tracking error and sparsity, and is calibrated by an empirical-Bayes stochastic approximation scheme. Conditional on this calibration, we approximate the posterior distribution of the portfolio weights using proximal Langevin-type Markov chain Monte Carlo algorithms tailored to the budget constraint. This yields posterior uncertainty on tracking error, portfolio composition and prospective rebalancing moves. Building on these posterior samples, we propose rules for rebalancing that gate trades through magnitude-based thresholds and posterior activation probabilities, thereby trading off expected tracking error against turnover and portfolio size. A case study on tracking the S&P~500 index is carried out to showcase how our tools shape the decision process from portfolio construction to rebalancing. ...

December 26, 2025 · 2 min · Research Team

Sparse spanning portfolios and under-diversification with second-order stochastic dominance

Sparse spanning portfolios and under-diversification with second-order stochastic dominance ArXiv ID: 2402.01951 “View on arXiv” Authors: Unknown Abstract We develop and implement methods for determining whether relaxing sparsity constraints on portfolios improves the investment opportunity set for risk-averse investors. We formulate a new estimation procedure for sparse second-order stochastic spanning based on a greedy algorithm and Linear Programming. We show the optimal recovery of the sparse solution asymptotically whether spanning holds or not. From large equity datasets, we estimate the expected utility loss due to possible under-diversification, and find that there is no benefit from expanding a sparse opportunity set beyond 45 assets. The optimal sparse portfolio invests in 10 industry sectors and cuts tail risk when compared to a sparse mean-variance portfolio. On a rolling-window basis, the number of assets shrinks to 25 assets in crisis periods, while standard factor models cannot explain the performance of the sparse portfolios. ...

February 2, 2024 · 2 min · Research Team

Sparse Index Tracking via Topological Learning

Sparse Index Tracking via Topological Learning ArXiv ID: 2310.09578 “View on arXiv” Authors: Unknown Abstract In this research, we introduce a novel methodology for the index tracking problem with sparse portfolios by leveraging topological data analysis (TDA). Utilizing persistence homology to measure the riskiness of assets, we introduce a topological method for data-driven learning of the parameters for regularization terms. Specifically, the Vietoris-Rips filtration method is utilized to capture the intricate topological features of asset movements, providing a robust framework for portfolio tracking. Our approach has the advantage of accommodating both $\ell_1$ and $\ell_2$ penalty terms without the requirement for expensive estimation procedures. We empirically validate the performance of our methodology against state-of-the-art sparse index tracking techniques, such as Elastic-Net and SLOPE, using a dataset that covers 23 years of S&P500 index and its constituent data. Our out-of-sample results show that this computationally efficient technique surpasses conventional methods across risk metrics, risk-adjusted performance, and trading expenses in varied market conditions. Furthermore, in turbulent markets, it not only maintains but also enhances tracking performance. ...

October 14, 2023 · 2 min · Research Team