false

Extracting Alpha from Financial Analyst Networks

Extracting Alpha from Financial Analyst Networks ArXiv ID: 2410.20597 “View on arXiv” Authors: Unknown Abstract We investigate the effectiveness of a momentum trading signal based on the coverage network of financial analysts. This signal builds on the key information-brokerage role financial sell-side analysts play in modern stock markets. The baskets of stocks covered by each analyst can be used to construct a network between firms whose edge weights represent the number of analysts jointly covering both firms. Although the link between financial analysts coverage and co-movement of firms’ stock prices has been investigated in the literature, little effort has been made to systematically learn the most effective combination of signals from firms covered jointly by analysts in order to benefit from any spillover effect. To fill this gap, we build a trading strategy which leverages the analyst coverage network using a graph attention network. More specifically, our model learns to aggregate information from individual firm features and signals from neighbouring firms in a node-level forecasting task. We develop a portfolio based on those predictions which we demonstrate to exhibit an annualized returns of 29.44% and a Sharpe ratio of 4.06 substantially outperforming market baselines and existing graph machine learning based frameworks. We further investigate the performance and robustness of this strategy through extensive empirical analysis. Our paper represents one of the first attempts in using graph machine learning to extract actionable knowledge from the analyst coverage network for practical financial applications. ...

October 27, 2024 · 2 min · Research Team

Dynamic graph neural networks for enhanced volatility prediction in financial markets

Dynamic graph neural networks for enhanced volatility prediction in financial markets ArXiv ID: 2410.16858 “View on arXiv” Authors: Unknown Abstract Volatility forecasting is essential for risk management and decision-making in financial markets. Traditional models like Generalized Autoregressive Conditional Heteroskedasticity (GARCH) effectively capture volatility clustering but often fail to model complex, non-linear interdependencies between multiple indices. This paper proposes a novel approach using Graph Neural Networks (GNNs) to represent global financial markets as dynamic graphs. The Temporal Graph Attention Network (Temporal GAT) combines Graph Convolutional Networks (GCNs) and Graph Attention Networks (GATs) to capture the temporal and structural dynamics of volatility spillovers. By utilizing correlation-based and volatility spillover indices, the Temporal GAT constructs directed graphs that enhance the accuracy of volatility predictions. Empirical results from a 15-year study of eight major global indices show that the Temporal GAT outperforms traditional GARCH models and other machine learning methods, particularly in short- to mid-term forecasts. The sensitivity and scenario-based analysis over a range of parameters and hyperparameters further demonstrate the significance of the proposed technique. Hence, this work highlights the potential of GNNs in modeling complex market behaviors, providing valuable insights for financial analysts and investors. ...

October 22, 2024 · 2 min · Research Team

SpotV2Net: Multivariate Intraday Spot Volatility Forecasting via Vol-of-Vol-Informed Graph Attention Networks

SpotV2Net: Multivariate Intraday Spot Volatility Forecasting via Vol-of-Vol-Informed Graph Attention Networks ArXiv ID: 2401.06249 “View on arXiv” Authors: Unknown Abstract This paper introduces SpotV2Net, a multivariate intraday spot volatility forecasting model based on a Graph Attention Network architecture. SpotV2Net represents assets as nodes within a graph and includes non-parametric high-frequency Fourier estimates of the spot volatility and co-volatility as node features. Further, it incorporates Fourier estimates of the spot volatility of volatility and co-volatility of volatility as features for node edges, to capture spillover effects. We test the forecasting accuracy of SpotV2Net in an extensive empirical exercise, conducted with the components of the Dow Jones Industrial Average index. The results we obtain suggest that SpotV2Net yields statistically significant gains in forecasting accuracy, for both single-step and multi-step forecasts, compared to a panel heterogenous auto-regressive model and alternative machine-learning models. To interpret the forecasts produced by SpotV2Net, we employ GNNExplainer \citep{“ying2019gnnexplainer”}, a model-agnostic interpretability tool, and thereby uncover subgraphs that are critical to a node’s predictions. ...

January 11, 2024 · 2 min · Research Team

Graph Neural Networks for Forecasting Multivariate Realized Volatility with Spillover Effects

Graph Neural Networks for Forecasting Multivariate Realized Volatility with Spillover Effects ArXiv ID: 2308.01419 “View on arXiv” Authors: Unknown Abstract We present a novel methodology for modeling and forecasting multivariate realized volatilities using customized graph neural networks to incorporate spillover effects across stocks. The proposed model offers the benefits of incorporating spillover effects from multi-hop neighbors, capturing nonlinear relationships, and flexible training with different loss functions. Our empirical findings provide compelling evidence that incorporating spillover effects from multi-hop neighbors alone does not yield a clear advantage in terms of predictive accuracy. However, modeling nonlinear spillover effects enhances the forecasting accuracy of realized volatilities, particularly for short-term horizons of up to one week. Moreover, our results consistently indicate that training with the Quasi-likelihood loss leads to substantial improvements in model performance compared to the commonly-used mean squared error. A comprehensive series of empirical evaluations in alternative settings confirm the robustness of our results. ...

August 1, 2023 · 2 min · Research Team

The Effect of COVID-19 on Cryptocurrencies and the Stock Market Volatility -- A Two-Stage DCC-EGARCH Model Analysis

The Effect of COVID-19 on Cryptocurrencies and the Stock Market Volatility – A Two-Stage DCC-EGARCH Model Analysis ArXiv ID: 2307.09137 “View on arXiv” Authors: Unknown Abstract This research examines the correlations between the return volatility of cryptocurrencies, global stock market indices, and the spillover effects of the COVID-19 pandemic. For this purpose, we employed a two-stage multivariate volatility exponential GARCH (EGARCH) model with an integrated dynamic conditional correlation (DCC) approach to measure the impact on the financial portfolio returns from 2019 to 2020. Moreover, we used value-at-risk (VaR) and value-at-risk measurements based on the Cornish-Fisher expansion (CFVaR). The empirical results show significant long- and short-term spillover effects. The two-stage multivariate EGARCH model’s results show that the conditional volatilities of both asset portfolios surge more after positive news and respond well to previous shocks. As a result, financial assets have low unconditional volatility and the lowest risk when there are no external interruptions. Despite the financial assets’ sensitivity to shocks, they exhibit some resistance to fluctuations in market confidence. The VaR performance comparison results with the assets portfolios differ. During the COVID-19 outbreak, the Dow (DJI) index reports VaR’s highest loss, followed by the S&P500. Conversely, the CFVaR reports negative risk results for the entire cryptocurrency portfolio during the pandemic, except for the Ethereum (ETH). ...

July 18, 2023 · 2 min · Research Team