false

Testing for the Minimum Mean-Variance Spanning Set

Testing for the Minimum Mean-Variance Spanning Set ArXiv ID: 2501.19213 “View on arXiv” Authors: Unknown Abstract This paper explores the estimation and inference of the minimum spanning set (MSS), the smallest subset of risky assets that spans the mean-variance efficient frontier of the full asset set. We establish identification conditions for the MSS and develop a novel procedure for its estimation and inference. Our theoretical analysis shows that the proposed MSS estimator covers the true MSS with probability approaching 1 and converges asymptotically to the true MSS at any desired confidence level, such as 0.95 or 0.99. Monte Carlo simulations confirm the strong finite-sample performance of the MSS estimator. We apply our method to evaluate the relative importance of individual stock momentum and factor momentum strategies, along with a set of well-established stock return factors. The empirical results highlight factor momentum, along with several stock momentum and return factors, as key drivers of mean-variance efficiency. Furthermore, our analysis uncovers the sources of contribution from these factors and provides a ranking of their relative importance, offering new insights into their roles in mean-variance analysis. ...

January 31, 2025 · 2 min · Research Team

When can weak latent factors be statistically inferred?

When can weak latent factors be statistically inferred? ArXiv ID: 2407.03616 “View on arXiv” Authors: Unknown Abstract This article establishes a new and comprehensive estimation and inference theory for principal component analysis (PCA) under the weak factor model that allow for cross-sectional dependent idiosyncratic components under the nearly minimal factor strength relative to the noise level or signal-to-noise ratio. Our theory is applicable regardless of the relative growth rate between the cross-sectional dimension $N$ and temporal dimension $T$. This more realistic assumption and noticeable result require completely new technical device, as the commonly-used leave-one-out trick is no longer applicable to the case with cross-sectional dependence. Another notable advancement of our theory is on PCA inference $ - $ for example, under the regime where $N\asymp T$, we show that the asymptotic normality for the PCA-based estimator holds as long as the signal-to-noise ratio (SNR) grows faster than a polynomial rate of $\log N$. This finding significantly surpasses prior work that required a polynomial rate of $N$. Our theory is entirely non-asymptotic, offering finite-sample characterizations for both the estimation error and the uncertainty level of statistical inference. A notable technical innovation is our closed-form first-order approximation of PCA-based estimator, which paves the way for various statistical tests. Furthermore, we apply our theories to design easy-to-implement statistics for validating whether given factors fall in the linear spans of unknown latent factors, testing structural breaks in the factor loadings for an individual unit, checking whether two units have the same risk exposures, and constructing confidence intervals for systematic risks. Our empirical studies uncover insightful correlations between our test results and economic cycles. ...

July 4, 2024 · 2 min · Research Team

Student t-Lévy regression model in YUIMA

Student t-Lévy regression model in YUIMA ArXiv ID: 2403.12078 “View on arXiv” Authors: Unknown Abstract The aim of this paper is to discuss an estimation and a simulation method in the \textsf{“R”} package YUIMA for a linear regression model driven by a Student-$t$ Lévy process with constant scale and arbitrary degrees of freedom. This process finds applications in several fields, for example finance, physic, biology, etc. The model presents two main issues. The first is related to the simulation of a sample path at high-frequency level. Indeed, only the $t$-Lévy increments defined on an unitary time interval are Student-$t$ distributed. In YUIMA, we solve this problem by means of the inverse Fourier transform for simulating the increments of a Student-$t$ Lévy defined on a interval with any length. A second problem is due to the fact that joint estimation of trend, scale, and degrees of freedom does not seem to have been investigated as yet. In YUIMA, we develop a two-step estimation procedure that efficiently deals with this issue. Numerical examples are given in order to explain methods and classes used in the YUIMA package. ...

February 26, 2024 · 2 min · Research Team