false

Dynamic Factor Model-Based Multiperiod Mean-Variance Portfolio Selection with Portfolio Constraints

Dynamic Factor Model-Based Multiperiod Mean-Variance Portfolio Selection with Portfolio Constraints ArXiv ID: 2502.17915 “View on arXiv” Authors: Unknown Abstract Motivated by practical applications, we explore the constrained multi-period mean-variance portfolio selection problem within a market characterized by a dynamic factor model. This model captures predictability in asset returns driven by state variables and incorporates cone-type portfolio constraints that are crucial in practice. The model is broad enough to encompass various dynamic factor frameworks, including practical considerations such as no-short-selling and cardinality constraints. We derive a semi-analytical optimal solution using dynamic programming, revealing it as a piecewise linear feedback policy to wealth, with all factors embedded within the allocation vectors. Additionally, we demonstrate that the portfolio policies are determined by two specific stochastic processes resulting from the stochastic optimizations, for which we provide detailed algorithms. These processes reflect the investor’s assessment of future investment opportunities and play a crucial role in characterizing the time consistency and efficiency of the optimal policy through the variance-optimal signed supermartingale measure of the market. We present numerical examples that illustrate the model’s application in various settings. Using real market data, we investigate how the factors influence portfolio policies and demonstrate that incorporating the factor structure may enhance out-of-sample performance. ...

February 25, 2025 · 2 min · Research Team

Fitting random cash management models to data

Fitting random cash management models to data ArXiv ID: 2401.08548 “View on arXiv” Authors: Unknown Abstract Organizations use cash management models to control balances to both avoid overdrafts and obtain a profit from short-term investments. Most management models are based on control bounds which are derived from the assumption of a particular cash flow probability distribution. In this paper, we relax this strong assumption to fit cash management models to data by means of stochastic and linear programming. We also introduce ensembles of random cash management models which are built by randomly selecting a subsequence of the original cash flow data set. We illustrate our approach by means of a real case study showing that a small random sample of data is enough to fit sufficiently good bound-based models. ...

January 16, 2024 · 2 min · Research Team