false

The VIX as Stochastic Volatility for Corporate Bonds

The VIX as Stochastic Volatility for Corporate Bonds ArXiv ID: 2410.22498 “View on arXiv” Authors: Unknown Abstract Classic stochastic volatility models assume volatility is unobservable. We use the Volatility Index: S&P 500 VIX to observe it, to easier fit the model. We apply it to corporate bonds. We fit autoregression for corporate rates and for risk spreads between these rates and Treasury rates. Next, we divide residuals by VIX. Our main idea is such division makes residuals closer to the ideal case of a Gaussian white noise. This is remarkable, since these residuals and VIX come from separate market segments. Similarly, we model corporate bond returns as a linear function of rates and rate changes. Our article has two main parts: Moody’s AAA and BAA spreads; Bank of America investment-grade and high-yield rates, spreads, and returns. We analyze long-term stability of these models. ...

October 29, 2024 · 2 min · Research Team

Method of Moments Estimation for Affine Stochastic Volatility Models

Method of Moments Estimation for Affine Stochastic Volatility Models ArXiv ID: 2408.09185 “View on arXiv” Authors: Unknown Abstract We develop moment estimators for the parameters of affine stochastic volatility models. We first address the challenge of calculating moments for the models by introducing a recursive equation for deriving closed-form expressions for moments of any order. Consequently, we propose our moment estimators. We then establish a central limit theorem for our estimators and derive the explicit formulas for the asymptotic covariance matrix. Finally, we provide numerical results to validate our method. ...

August 17, 2024 · 2 min · Research Team

Rough volatility: evidence from range volatility estimators

Rough volatility: evidence from range volatility estimators ArXiv ID: 2312.01426 “View on arXiv” Authors: Unknown Abstract In Gatheral et al. 2018, first posted in 2014, volatility is characterized by fractional behavior with a Hurst exponent $H < 0.5$, challenging traditional views of volatility dynamics. Gatheral et al. demonstrated this using realized volatility measurements. Our study extends this analysis by employing range-based proxies to confirm their findings across a broader dataset and non-standard assets. Notably, we address the concern that rough volatility might be an artifact of microstructure noise in high-frequency return data. Our results reveal that log-volatility, estimated via range-based methods, behaves akin to fractional Brownian motion with an even lower $H$, below $0.1$. We also affirm the efficacy of the rough fractional stochastic volatility model (RFSV), finding that its predictive capability surpasses that of AR, HAR, and GARCH models in most scenarios. This work substantiates the intrinsic nature of rough volatility, independent of the microstructure noise often present in high-frequency financial data. ...

December 3, 2023 · 2 min · Research Team

Deep calibration with random grids

Deep calibration with random grids ArXiv ID: 2306.11061 “View on arXiv” Authors: Unknown Abstract We propose a neural network-based approach to calibrating stochastic volatility models, which combines the pioneering grid approach by Horvath et al. (2021) with the pointwise two-stage calibration of Bayer et al. (2018) and Liu et al. (2019). Our methodology inherits robustness from the former while not suffering from the need for interpolation/extrapolation techniques, a clear advantage ensured by the pointwise approach. The crucial point to the entire procedure is the generation of implied volatility surfaces on random grids, which one dispenses to the network in the training phase. We support the validity of our calibration technique with several empirical and Monte Carlo experiments for the rough Bergomi and Heston models under a simple but effective parametrization of the forward variance curve. The approach paves the way for valuable applications in financial engineering - for instance, pricing under local stochastic volatility models - and extensions to the fast-growing field of path-dependent volatility models. ...

June 19, 2023 · 2 min · Research Team