false

BERTopic-Driven Stock Market Predictions: Unraveling Sentiment Insights

BERTopic-Driven Stock Market Predictions: Unraveling Sentiment Insights ArXiv ID: 2404.02053 “View on arXiv” Authors: Unknown Abstract This paper explores the intersection of Natural Language Processing (NLP) and financial analysis, focusing on the impact of sentiment analysis in stock price prediction. We employ BERTopic, an advanced NLP technique, to analyze the sentiment of topics derived from stock market comments. Our methodology integrates this sentiment analysis with various deep learning models, renowned for their effectiveness in time series and stock prediction tasks. Through comprehensive experiments, we demonstrate that incorporating topic sentiment notably enhances the performance of these models. The results indicate that topics in stock market comments provide implicit, valuable insights into stock market volatility and price trends. This study contributes to the field by showcasing the potential of NLP in enriching financial analysis and opens up avenues for further research into real-time sentiment analysis and the exploration of emotional and contextual aspects of market sentiment. The integration of advanced NLP techniques like BERTopic with traditional financial analysis methods marks a step forward in developing more sophisticated tools for understanding and predicting market behaviors. ...

April 2, 2024 · 2 min · Research Team

Ploutos: Towards interpretable stock movement prediction with financial large language model

Ploutos: Towards interpretable stock movement prediction with financial large language model ArXiv ID: 2403.00782 “View on arXiv” Authors: Unknown Abstract Recent advancements in large language models (LLMs) have opened new pathways for many domains. However, the full potential of LLMs in financial investments remains largely untapped. There are two main challenges for typical deep learning-based methods for quantitative finance. First, they struggle to fuse textual and numerical information flexibly for stock movement prediction. Second, traditional methods lack clarity and interpretability, which impedes their application in scenarios where the justification for predictions is essential. To solve the above challenges, we propose Ploutos, a novel financial LLM framework that consists of PloutosGen and PloutosGPT. The PloutosGen contains multiple primary experts that can analyze different modal data, such as text and numbers, and provide quantitative strategies from different perspectives. Then PloutosGPT combines their insights and predictions and generates interpretable rationales. To generate accurate and faithful rationales, the training strategy of PloutosGPT leverage rearview-mirror prompting mechanism to guide GPT-4 to generate rationales, and a dynamic token weighting mechanism to finetune LLM by increasing key tokens weight. Extensive experiments show our framework outperforms the state-of-the-art methods on both prediction accuracy and interpretability. ...

February 18, 2024 · 2 min · Research Team

RAGIC: Risk-Aware Generative Adversarial Model for Stock Interval Construction

RAGIC: Risk-Aware Generative Adversarial Model for Stock Interval Construction ArXiv ID: 2402.10760 “View on arXiv” Authors: Unknown Abstract Efforts to predict stock market outcomes have yielded limited success due to the inherently stochastic nature of the market, influenced by numerous unpredictable factors. Many existing prediction approaches focus on single-point predictions, lacking the depth needed for effective decision-making and often overlooking market risk. To bridge this gap, we propose a novel model, RAGIC, which introduces sequence generation for stock interval prediction to quantify uncertainty more effectively. Our approach leverages a Generative Adversarial Network (GAN) to produce future price sequences infused with randomness inherent in financial markets. RAGIC’s generator includes a risk module, capturing the risk perception of informed investors, and a temporal module, accounting for historical price trends and seasonality. This multi-faceted generator informs the creation of risk-sensitive intervals through statistical inference, incorporating horizon-wise insights. The interval’s width is carefully adjusted to reflect market volatility. Importantly, our approach relies solely on publicly available data and incurs only low computational overhead. RAGIC’s evaluation across globally recognized broad-based indices demonstrates its balanced performance, offering both accuracy and informativeness. Achieving a consistent 95% coverage, RAGIC maintains a narrow interval width. This promising outcome suggests that our approach effectively addresses the challenges of stock market prediction while incorporating vital risk considerations. ...

February 16, 2024 · 2 min · Research Team

Learning to Generate Explainable Stock Predictions using Self-Reflective Large Language Models

Learning to Generate Explainable Stock Predictions using Self-Reflective Large Language Models ArXiv ID: 2402.03659 “View on arXiv” Authors: Unknown Abstract Explaining stock predictions is generally a difficult task for traditional non-generative deep learning models, where explanations are limited to visualizing the attention weights on important texts. Today, Large Language Models (LLMs) present a solution to this problem, given their known capabilities to generate human-readable explanations for their decision-making process. However, the task of stock prediction remains challenging for LLMs, as it requires the ability to weigh the varying impacts of chaotic social texts on stock prices. The problem gets progressively harder with the introduction of the explanation component, which requires LLMs to explain verbally why certain factors are more important than the others. On the other hand, to fine-tune LLMs for such a task, one would need expert-annotated samples of explanation for every stock movement in the training set, which is expensive and impractical to scale. To tackle these issues, we propose our Summarize-Explain-Predict (SEP) framework, which utilizes a self-reflective agent and Proximal Policy Optimization (PPO) to let a LLM teach itself how to generate explainable stock predictions in a fully autonomous manner. The reflective agent learns how to explain past stock movements through self-reasoning, while the PPO trainer trains the model to generate the most likely explanations from input texts. The training samples for the PPO trainer are also the responses generated during the reflective process, which eliminates the need for human annotators. Using our SEP framework, we fine-tune a LLM that can outperform both traditional deep-learning and LLM methods in prediction accuracy and Matthews correlation coefficient for the stock classification task. To justify the generalization capability of our framework, we further test it on the portfolio construction task, and demonstrate its effectiveness through various portfolio metrics. ...

February 6, 2024 · 3 min · Research Team

Integrating Stock Features and Global Information via Large Language Models for Enhanced Stock Return Prediction

Integrating Stock Features and Global Information via Large Language Models for Enhanced Stock Return Prediction ArXiv ID: 2310.05627 “View on arXiv” Authors: Unknown Abstract The remarkable achievements and rapid advancements of Large Language Models (LLMs) such as ChatGPT and GPT-4 have showcased their immense potential in quantitative investment. Traders can effectively leverage these LLMs to analyze financial news and predict stock returns accurately. However, integrating LLMs into existing quantitative models presents two primary challenges: the insufficient utilization of semantic information embedded within LLMs and the difficulties in aligning the latent information within LLMs with pre-existing quantitative stock features. We propose a novel framework consisting of two components to surmount these challenges. The first component, the Local-Global (LG) model, introduces three distinct strategies for modeling global information. These approaches are grounded respectively on stock features, the capabilities of LLMs, and a hybrid method combining the two paradigms. The second component, Self-Correlated Reinforcement Learning (SCRL), focuses on aligning the embeddings of financial news generated by LLMs with stock features within the same semantic space. By implementing our framework, we have demonstrated superior performance in Rank Information Coefficient and returns, particularly compared to models relying only on stock features in the China A-share market. ...

October 9, 2023 · 2 min · Research Team