false

Predictive Performance of LSTM Networks on Sectoral Stocks in an Emerging Market: A Case Study of the Pakistan Stock Exchange

Predictive Performance of LSTM Networks on Sectoral Stocks in an Emerging Market: A Case Study of the Pakistan Stock Exchange ArXiv ID: 2509.14401 “View on arXiv” Authors: Ahad Yaqoob, Syed M. Abdullah Abstract The application of deep learning models for stock price forecasting in emerging markets remains underexplored despite their potential to capture complex temporal dependencies. This study develops and evaluates a Long Short-Term Memory (LSTM) network model for predicting the closing prices of ten major stocks across diverse sectors of the Pakistan Stock Exchange (PSX). Utilizing historical OHLCV data and an extensive set of engineered technical indicators, we trained and validated the model on a multi-year dataset. Our results demonstrate strong predictive performance ($R^2 > 0.87$) for stocks in stable, high-liquidity sectors such as power generation, cement, and fertilizers. Conversely, stocks characterized by high volatility, low liquidity, or sensitivity to external shocks (e.g., global oil prices) presented significant forecasting challenges. The study provides a replicable framework for LSTM-based forecasting in data-scarce emerging markets and discusses implications for investors and future research. ...

September 17, 2025 · 2 min · Research Team

Tokenizing Stock Prices for Enhanced Multi-Step Forecast and Prediction

Tokenizing Stock Prices for Enhanced Multi-Step Forecast and Prediction ArXiv ID: 2504.17313 “View on arXiv” Authors: Zhuohang Zhu, Haodong Chen, Qiang Qu, Xiaoming Chen, Vera Chung Abstract Effective stock price forecasting (estimating future prices) and prediction (estimating future price changes) are pivotal for investors, regulatory agencies, and policymakers. These tasks enable informed decision-making, risk management, strategic planning, and superior portfolio returns. Despite their importance, forecasting and prediction are challenging due to the dynamic nature of stock price data, which exhibit significant temporal variations in distribution and statistical properties. Additionally, while both forecasting and prediction targets are derived from the same dataset, their statistical characteristics differ significantly. Forecasting targets typically follow a log-normal distribution, characterized by significant shifts in mean and variance over time, whereas prediction targets adhere to a normal distribution. Furthermore, although multi-step forecasting and prediction offer a broader perspective and richer information compared to single-step approaches, it is much more challenging due to factors such as cumulative errors and long-term temporal variance. As a result, many previous works have tackled either single-step stock price forecasting or prediction instead. To address these issues, we introduce a novel model, termed Patched Channel Integration Encoder (PCIE), to tackle both stock price forecasting and prediction. In this model, we utilize multiple stock channels that cover both historical prices and price changes, and design a novel tokenization method to effectively embed these channels in a cross-channel and temporally efficient manner. Specifically, the tokenization process involves univariate patching and temporal learning with a channel-mixing encoder to reduce cumulative errors. Comprehensive experiments validate that PCIE outperforms current state-of-the-art models in forecast and prediction tasks. ...

April 24, 2025 · 2 min · Research Team

Hidformer: Transformer-Style Neural Network in Stock Price Forecasting

Hidformer: Transformer-Style Neural Network in Stock Price Forecasting ArXiv ID: 2412.19932 “View on arXiv” Authors: Unknown Abstract This paper investigates the application of Transformer-based neural networks to stock price forecasting, with a special focus on the intersection of machine learning techniques and financial market analysis. The evolution of Transformer models, from their inception to their adaptation for time series analysis in financial contexts, is reviewed and discussed. Central to our study is the exploration of the Hidformer model, which is currently recognized for its promising performance in time series prediction. The primary aim of this paper is to determine whether Hidformer will also prove itself in the task of stock price prediction. This slightly modified model serves as the framework for our experiments, integrating the principles of technical analysis with advanced machine learning concepts to enhance stock price prediction accuracy. We conduct an evaluation of the Hidformer model’s performance, using a set of criteria to determine its efficacy. Our findings offer additional insights into the practical application of Transformer architectures in financial time series forecasting, highlighting their potential to improve algorithmic trading strategies, including human decision making. ...

December 27, 2024 · 2 min · Research Team

News-Driven Stock Price Forecasting in Indian Markets: A Comparative Study of Advanced Deep Learning Models

News-Driven Stock Price Forecasting in Indian Markets: A Comparative Study of Advanced Deep Learning Models ArXiv ID: 2411.05788 “View on arXiv” Authors: Unknown Abstract Forecasting stock market prices remains a complex challenge for traders, analysts, and engineers due to the multitude of factors that influence price movements. Recent advancements in artificial intelligence (AI) and natural language processing (NLP) have significantly enhanced stock price prediction capabilities. AI’s ability to process vast and intricate data sets has led to more sophisticated forecasts. However, achieving consistently high accuracy in stock price forecasting remains elusive. In this paper, we leverage 30 years of historical data from national banks in India, sourced from the National Stock Exchange, to forecast stock prices. Our approach utilizes state-of-the-art deep learning models, including multivariate multi-step Long Short-Term Memory (LSTM), Facebook Prophet with LightGBM optimized through Optuna, and Seasonal Auto-Regressive Integrated Moving Average (SARIMA). We further integrate sentiment analysis from tweets and reliable financial sources such as Business Standard and Reuters, acknowledging their crucial influence on stock price fluctuations. ...

October 14, 2024 · 2 min · Research Team

Generating long-horizon stock buy signals with a neural language model

Generating long-horizon stock “buy” signals with a neural language model ArXiv ID: 2410.18988 “View on arXiv” Authors: Unknown Abstract This paper describes experiments on fine-tuning a small language model to generate forecasts of long-horizon stock price movements. Inputs to the model are narrative text from 10-K reports of large market capitalization companies in the S&P 500 index; the output is a forward-looking buy or sell decision. Price direction is predicted at discrete horizons up to 12 months after the report filing date. The results reported here demonstrate good out-of-sample statistical performance (F1-macro= 0.62) at medium to long investment horizons. In particular, the buy signals generated from 10-K text are found most precise at 6 and 9 months in the future. As measured by the F1 score, the buy signal provides between 4.8 and 9 percent improvement against a random stock selection model. In contrast, sell signals generated by the models do not perform well. This may be attributed to the highly imbalanced out-of-sample data, or perhaps due to management drafting annual reports with a bias toward positive language. Cross-sectional analysis of performance by economic sector suggests that idiosyncratic reporting styles within industries are correlated with varying degrees and time scales of price movement predictability. ...

October 9, 2024 · 2 min · Research Team