false

TradingAgents: Multi-Agents LLM Financial Trading Framework

TradingAgents: Multi-Agents LLM Financial Trading Framework ArXiv ID: 2412.20138 “View on arXiv” Authors: Unknown Abstract Significant progress has been made in automated problem-solving using societies of agents powered by large language models (LLMs). In finance, efforts have largely focused on single-agent systems handling specific tasks or multi-agent frameworks independently gathering data. However, the multi-agent systems’ potential to replicate real-world trading firms’ collaborative dynamics remains underexplored. TradingAgents proposes a novel stock trading framework inspired by trading firms, featuring LLM-powered agents in specialized roles such as fundamental analysts, sentiment analysts, technical analysts, and traders with varied risk profiles. The framework includes Bull and Bear researcher agents assessing market conditions, a risk management team monitoring exposure, and traders synthesizing insights from debates and historical data to make informed decisions. By simulating a dynamic, collaborative trading environment, this framework aims to improve trading performance. Detailed architecture and extensive experiments reveal its superiority over baseline models, with notable improvements in cumulative returns, Sharpe ratio, and maximum drawdown, highlighting the potential of multi-agent LLM frameworks in financial trading. TradingAgents is available at https://github.com/TauricResearch/TradingAgents. ...

December 28, 2024 · 2 min · Research Team

NEAT Algorithm-based Stock Trading Strategy with Multiple Technical Indicators Resonance

NEAT Algorithm-based Stock Trading Strategy with Multiple Technical Indicators Resonance ArXiv ID: 2501.14736 “View on arXiv” Authors: Unknown Abstract In this study, we applied the NEAT (NeuroEvolution of Augmenting Topologies) algorithm to stock trading using multiple technical indicators. Our approach focused on maximizing earning, avoiding risk, and outperforming the Buy & Hold strategy. We used progressive training data and a multi-objective fitness function to guide the evolution of the population towards these objectives. The results of our study showed that the NEAT model achieved similar returns to the Buy & Hold strategy, but with lower risk exposure and greater stability. We also identified some challenges in the training process, including the presence of a large number of unused nodes and connections in the model architecture. In future work, it may be worthwhile to explore ways to improve the NEAT algorithm and apply it to shorter interval data in order to assess the potential impact on performance. ...

December 11, 2024 · 2 min · Research Team

Learning the Market: Sentiment-Based Ensemble Trading Agents

Learning the Market: Sentiment-Based Ensemble Trading Agents ArXiv ID: 2402.01441 “View on arXiv” Authors: Unknown Abstract We propose and study the integration of sentiment analysis and deep reinforcement learning ensemble algorithms for stock trading by evaluating strategies capable of dynamically altering their active agent given the concurrent market environment. In particular, we design a simple-yet-effective method for extracting financial sentiment and combine this with improvements on existing trading agents, resulting in a strategy that effectively considers both qualitative market factors and quantitative stock data. We show that our approach results in a strategy that is profitable, robust, and risk-minimal - outperforming the traditional ensemble strategy as well as single agent algorithms and market metrics. Our findings suggest that the conventional practice of switching and reevaluating agents in ensemble every fixed-number of months is sub-optimal, and that a dynamic sentiment-based framework greatly unlocks additional performance. Furthermore, as we have designed our algorithm with simplicity and efficiency in mind, we hypothesize that the transition of our method from historical evaluation towards real-time trading with live data to be relatively simple. ...

February 2, 2024 · 2 min · Research Team