false

A Distillation-based Future-aware Graph Neural Network for Stock Trend Prediction

A Distillation-based Future-aware Graph Neural Network for Stock Trend Prediction ArXiv ID: 2502.10776 “View on arXiv” Authors: Unknown Abstract Stock trend prediction involves forecasting the future price movements by analyzing historical data and various market indicators. With the advancement of machine learning, graph neural networks (GNNs) have been extensively employed in stock prediction due to their powerful capability to capture spatiotemporal dependencies of stocks. However, despite the efforts of various GNN stock predictors to enhance predictive performance, the improvements remain limited, as they focus solely on analyzing historical spatiotemporal dependencies, overlooking the correlation between historical and future patterns. In this study, we propose a novel distillation-based future-aware GNN framework (DishFT-GNN) for stock trend prediction. Specifically, DishFT-GNN trains a teacher model and a student model, iteratively. The teacher model learns to capture the correlation between distribution shifts of historical and future data, which is then utilized as intermediate supervision to guide the student model to learn future-aware spatiotemporal embeddings for accurate prediction. Through extensive experiments on two real-world datasets, we verify the state-of-the-art performance of DishFT-GNN. ...

February 15, 2025 · 2 min · Research Team

Dynamic Graph Representation with Contrastive Learning for Financial Market Prediction: Integrating Temporal Evolution and Static Relations

Dynamic Graph Representation with Contrastive Learning for Financial Market Prediction: Integrating Temporal Evolution and Static Relations ArXiv ID: 2412.04034 “View on arXiv” Authors: Unknown Abstract Temporal Graph Learning (TGL) is crucial for capturing the evolving nature of stock markets. Traditional methods often ignore the interplay between dynamic temporal changes and static relational structures between stocks. To address this issue, we propose the Dynamic Graph Representation with Contrastive Learning (DGRCL) framework, which integrates dynamic and static graph relations to improve the accuracy of stock trend prediction. Our framework introduces two key components: the Embedding Enhancement (EE) module and the Contrastive Constrained Training (CCT) module. The EE module focuses on dynamically capturing the temporal evolution of stock data, while the CCT module enforces static constraints based on stock relations, refined within contrastive learning. This dual-relation approach allows for a more comprehensive understanding of stock market dynamics. Our experiments on two major U.S. stock market datasets, NASDAQ and NYSE, demonstrate that DGRCL significantly outperforms state-of-the-art TGL baselines. Ablation studies indicate the importance of both modules. Overall, DGRCL not only enhances prediction ability but also provides a robust framework for integrating temporal and relational data in dynamic graphs. Code and data are available for public access. ...

December 5, 2024 · 2 min · Research Team

Comparative Analysis of LSTM, GRU, and Transformer Models for Stock Price Prediction

Comparative Analysis of LSTM, GRU, and Transformer Models for Stock Price Prediction ArXiv ID: 2411.05790 “View on arXiv” Authors: Unknown Abstract In recent fast-paced financial markets, investors constantly seek ways to gain an edge and make informed decisions. Although achieving perfect accuracy in stock price predictions remains elusive, artificial intelligence (AI) advancements have significantly enhanced our ability to analyze historical data and identify potential trends. This paper takes AI driven stock price trend prediction as the core research, makes a model training data set of famous Tesla cars from 2015 to 2024, and compares LSTM, GRU, and Transformer Models. The analysis is more consistent with the model of stock trend prediction, and the experimental results show that the accuracy of the LSTM model is 94%. These methods ultimately allow investors to make more informed decisions and gain a clearer insight into market behaviors. ...

October 20, 2024 · 2 min · Research Team

Multi-relational Graph Diffusion Neural Network with Parallel Retention for Stock Trends Classification

Multi-relational Graph Diffusion Neural Network with Parallel Retention for Stock Trends Classification ArXiv ID: 2401.05430 “View on arXiv” Authors: Unknown Abstract Stock trend classification remains a fundamental yet challenging task, owing to the intricate time-evolving dynamics between and within stocks. To tackle these two challenges, we propose a graph-based representation learning approach aimed at predicting the future movements of multiple stocks. Initially, we model the complex time-varying relationships between stocks by generating dynamic multi-relational stock graphs. This is achieved through a novel edge generation algorithm that leverages information entropy and signal energy to quantify the intensity and directionality of inter-stock relations on each trading day. Then, we further refine these initial graphs through a stochastic multi-relational diffusion process, adaptively learning task-optimal edges. Subsequently, we implement a decoupled representation learning scheme with parallel retention to obtain the final graph representation. This strategy better captures the unique temporal features within individual stocks while also capturing the overall structure of the stock graph. Comprehensive experiments conducted on real-world datasets from two US markets (NASDAQ and NYSE) and one Chinese market (Shanghai Stock Exchange: SSE) validate the effectiveness of our method. Our approach consistently outperforms state-of-the-art baselines in forecasting next trading day stock trends across three test periods spanning seven years. Datasets and code have been released (https://github.com/pixelhero98/MGDPR). ...

January 5, 2024 · 2 min · Research Team

Support for Stock Trend Prediction Using Transformers and Sentiment Analysis

Support for Stock Trend Prediction Using Transformers and Sentiment Analysis ArXiv ID: 2305.14368 “View on arXiv” Authors: Unknown Abstract Stock trend analysis has been an influential time-series prediction topic due to its lucrative and inherently chaotic nature. Many models looking to accurately predict the trend of stocks have been based on Recurrent Neural Networks (RNNs). However, due to the limitations of RNNs, such as gradient vanish and long-term dependencies being lost as sequence length increases, in this paper we develop a Transformer based model that uses technical stock data and sentiment analysis to conduct accurate stock trend prediction over long time windows. This paper also introduces a novel dataset containing daily technical stock data and top news headline data spanning almost three years. Stock prediction based solely on technical data can suffer from lag caused by the inability of stock indicators to effectively factor in breaking market news. The use of sentiment analysis on top headlines can help account for unforeseen shifts in market conditions caused by news coverage. We measure the performance of our model against RNNs over sequence lengths spanning 5 business days to 30 business days to mimic different length trading strategies. This reveals an improvement in directional accuracy over RNNs as sequence length is increased, with the largest improvement being close to 18.63% at 30 business days. ...

May 18, 2023 · 2 min · Research Team