false

HODL Strategy or Fantasy? 480 Million Crypto Market Simulations and the Macro-Sentiment Effect

HODL Strategy or Fantasy? 480 Million Crypto Market Simulations and the Macro-Sentiment Effect ArXiv ID: 2512.02029 “View on arXiv” Authors: Weikang Zhang, Alison Watts Abstract Crypto enthusiasts claim that buying and holding crypto assets yields high returns, often citing Bitcoin’s past performance to promote other tokens and fuel fear of missing out. However, understanding the real risk-return trade-off and what factors affect future crypto returns is crucial as crypto becomes increasingly accessible to retail investors through major brokerages. We examine the HODL strategy through two independent analyses. First, we implement 480 million Monte Carlo simulations across 378 non-stablecoin crypto assets, net of trading fees and the opportunity cost of 1-month Treasury bills, and find strong evidence of survivorship bias and extreme downside concentration. At the 2-3 year horizon, the median excess return is -28.4 percent, the 1 percent conditional value at risk indicates that tail scenarios wipe out principal after all costs, and only the top quartile achieves very large gains, with a mean excess return of 1,326.7 percent. These results challenge the HODL narrative: across a broad set of assets, simple buy-and-hold loads extreme downside risk onto most investors, and the miracles mostly belong to the luckiest quarter. Second, using a Bayesian multi-horizon local projection framework, we find that endogenous predictors based on realized risk-return metrics have economically negligible and unstable effects, while macro-finance factors, especially the 24-week exponential moving average of the Fear and Greed Index, display persistent long-horizon impacts and high cross-basket stability. Where significant, a one-standard-deviation sentiment shock reduces forward top-quartile mean excess returns by 15-22 percentage points and median returns by 6-10 percentage points over 1-3 year horizons, suggesting that macro-sentiment conditions, rather than realized return histories, are the dominant indicators for future outcomes. ...

November 19, 2025 · 3 min · Research Team

Can LLM-based Financial Investing Strategies Outperform the Market in Long Run?

Can LLM-based Financial Investing Strategies Outperform the Market in Long Run? ArXiv ID: 2505.07078 “View on arXiv” Authors: Weixian Waylon Li, Hyeonjun Kim, Mihai Cucuringu, Tiejun Ma Abstract Large Language Models (LLMs) have recently been leveraged for asset pricing tasks and stock trading applications, enabling AI agents to generate investment decisions from unstructured financial data. However, most evaluations of LLM timing-based investing strategies are conducted on narrow timeframes and limited stock universes, overstating effectiveness due to survivorship and data-snooping biases. We critically assess their generalizability and robustness by proposing FINSABER, a backtesting framework evaluating timing-based strategies across longer periods and a larger universe of symbols. Systematic backtests over two decades and 100+ symbols reveal that previously reported LLM advantages deteriorate significantly under broader cross-section and over a longer-term evaluation. Our market regime analysis further demonstrates that LLM strategies are overly conservative in bull markets, underperforming passive benchmarks, and overly aggressive in bear markets, incurring heavy losses. These findings highlight the need to develop LLM strategies that are able to prioritise trend detection and regime-aware risk controls over mere scaling of framework complexity. ...

May 11, 2025 · 2 min · Research Team