false

NEAT Algorithm-based Stock Trading Strategy with Multiple Technical Indicators Resonance

NEAT Algorithm-based Stock Trading Strategy with Multiple Technical Indicators Resonance ArXiv ID: 2501.14736 “View on arXiv” Authors: Unknown Abstract In this study, we applied the NEAT (NeuroEvolution of Augmenting Topologies) algorithm to stock trading using multiple technical indicators. Our approach focused on maximizing earning, avoiding risk, and outperforming the Buy & Hold strategy. We used progressive training data and a multi-objective fitness function to guide the evolution of the population towards these objectives. The results of our study showed that the NEAT model achieved similar returns to the Buy & Hold strategy, but with lower risk exposure and greater stability. We also identified some challenges in the training process, including the presence of a large number of unused nodes and connections in the model architecture. In future work, it may be worthwhile to explore ways to improve the NEAT algorithm and apply it to shorter interval data in order to assess the potential impact on performance. ...

December 11, 2024 · 2 min · Research Team

Decision Trees for Intuitive Intraday Trading Strategies

Decision Trees for Intuitive Intraday Trading Strategies ArXiv ID: 2405.13959 “View on arXiv” Authors: Unknown Abstract This research paper aims to investigate the efficacy of decision trees in constructing intraday trading strategies using existing technical indicators for individual equities in the NIFTY50 index. Unlike conventional methods that rely on a fixed set of rules based on combinations of technical indicators developed by a human trader through their analysis, the proposed approach leverages decision trees to create unique trading rules for each stock, potentially enhancing trading performance and saving time. By extensively backtesting the strategy for each stock, a trader can determine whether to employ the rules generated by the decision tree for that specific stock. While this method does not guarantee success for every stock, decision treebased strategies outperform the simple buy-and-hold strategy for many stocks. The results highlight the proficiency of decision trees as a valuable tool for enhancing intraday trading performance on a stock-by-stock basis and could be of interest to traders seeking to improve their trading strategies. ...

May 22, 2024 · 2 min · Research Team

A Hybrid Deep Learning Framework for Stock Price Prediction Considering the Investor Sentiment of Online Forum Enhanced by Popularity

A Hybrid Deep Learning Framework for Stock Price Prediction Considering the Investor Sentiment of Online Forum Enhanced by Popularity ArXiv ID: 2405.10584 “View on arXiv” Authors: Unknown Abstract Stock price prediction has always been a difficult task for forecasters. Using cutting-edge deep learning techniques, stock price prediction based on investor sentiment extracted from online forums has become feasible. We propose a novel hybrid deep learning framework for predicting stock prices. The framework leverages the XLNET model to analyze the sentiment conveyed in user posts on online forums, combines these sentiments with the post popularity factor to compute daily group sentiments, and integrates this information with stock technical indicators into an improved BiLSTM-highway model for stock price prediction. Through a series of comparative experiments involving four stocks on the Chinese stock market, it is demonstrated that the hybrid framework effectively predicts stock prices. This study reveals the necessity of analyzing investors’ textual views for stock price prediction. ...

May 17, 2024 · 2 min · Research Team

The Effect of Data Types' on the Performance of Machine Learning Algorithms for Financial Prediction

The Effect of Data Types’ on the Performance of Machine Learning Algorithms for Financial Prediction ArXiv ID: 2404.19324 “View on arXiv” Authors: Unknown Abstract Forecasting cryptocurrencies as a financial issue is crucial as it provides investors with possible financial benefits. A small improvement in forecasting performance can lead to increased profitability; therefore, obtaining a realistic forecast is very important for investors. Successful forecasting provides traders with effective buy-or-hold strategies, allowing them to make more profits. The most important thing in this process is to produce accurate forecasts suitable for real-life applications. Bitcoin, frequently mentioned recently due to its volatility and chaotic behavior, has begun to pay great attention and has become an investment tool, especially during and after the COVID-19 pandemic. This study provided a comprehensive methodology, including constructing continuous and trend data using one and seven years periods of data as inputs and applying machine learning (ML) algorithms to forecast Bitcoin price movement. A binarization procedure was applied using continuous data to construct the trend data representing each input feature trend. Following the related literature, the input features are determined as technical indicators, google trends, and the number of tweets. Random forest (RF), K-Nearest neighbor (KNN), Extreme Gradient Boosting (XGBoost-XGB), Support vector machine (SVM) Naive Bayes (NB), Artificial Neural Networks (ANN), and Long-Short-Term Memory (LSTM) networks were applied on the selected features for prediction purposes. This work investigates two main research questions: i. How does the sample size affect the prediction performance of ML algorithms? ii. How does the data type affect the prediction performance of ML algorithms? Accuracy and area under the ROC curve (AUC) values were used to compare the model performance. A t-test was performed to test the statistical significance of the prediction results. ...

April 30, 2024 · 3 min · Research Team

Enhancing Price Prediction in Cryptocurrency Using Transformer Neural Network and Technical Indicators

Enhancing Price Prediction in Cryptocurrency Using Transformer Neural Network and Technical Indicators ArXiv ID: 2403.03606 “View on arXiv” Authors: Unknown Abstract This study presents an innovative approach for predicting cryptocurrency time series, specifically focusing on Bitcoin, Ethereum, and Litecoin. The methodology integrates the use of technical indicators, a Performer neural network, and BiLSTM (Bidirectional Long Short-Term Memory) to capture temporal dynamics and extract significant features from raw cryptocurrency data. The application of technical indicators, such facilitates the extraction of intricate patterns, momentum, volatility, and trends. The Performer neural network, employing Fast Attention Via positive Orthogonal Random features (FAVOR+), has demonstrated superior computational efficiency and scalability compared to the traditional Multi-head attention mechanism in Transformer models. Additionally, the integration of BiLSTM in the feedforward network enhances the model’s capacity to capture temporal dynamics in the data, processing it in both forward and backward directions. This is particularly advantageous for time series data where past and future data points can influence the current state. The proposed method has been applied to the hourly and daily timeframes of the major cryptocurrencies and its performance has been benchmarked against other methods documented in the literature. The results underscore the potential of the proposed method to outperform existing models, marking a significant progression in the field of cryptocurrency price prediction. ...

March 6, 2024 · 2 min · Research Team

ESG driven pairs algorithm for sustainable trading: Analysis from the Indian market

ESG driven pairs algorithm for sustainable trading: Analysis from the Indian market ArXiv ID: 2401.14761 “View on arXiv” Authors: Unknown Abstract This paper proposes an algorithmic trading framework integrating Environmental, Social, and Governance (ESG) ratings with a pairs trading strategy. It addresses the demand for socially responsible investment solutions by developing a unique algorithm blending ESG data with methods for identifying co-integrated stocks. This allows selecting profitable pairs adhering to ESG principles. Further, it incorporates technical indicators for optimal trade execution within this sustainability framework. Extensive back-testing provides evidence of the model’s effectiveness, consistently generating positive returns exceeding conventional pairs trading strategies, while upholding ESG principles. This paves the way for a transformative approach to algorithmic trading, offering insights for investors, policymakers, and academics. ...

January 26, 2024 · 2 min · Research Team

Integrating feature selection and regression methods with technical indicators for predicting Apple Inc. stock prices

Integrating feature selection and regression methods with technical indicators for predicting Apple Inc. stock prices ArXiv ID: 2310.09903 “View on arXiv” Authors: Unknown Abstract Stock price prediction is influenced by a variety of factors, including technical indicators, which makes Feature selection crucial for identifying the most relevant predictors. This study examines the impact of feature selection on stock price prediction accuracy using technical indicators. A total of 123 technical indicators and 10 regression models were evaluated using 13 years of Apple Inc. data. The primary goal is to identify the best combination of indicators and models for improved forecasting. The results show that a 3-day time window provides the highest prediction accuracy. Model performance was assessed using five error-based metrics. Among the models, Linear Regression and Ridge Regression achieved the best overall performance, each with a Mean Squared Error (MSE) of 0.00025. Applying feature selection significantly improved model accuracy. For example, the Multi-layered Perceptron Regression using Forward Selection improved by 56.47% over its baseline version. Support Vector Regression improved by 67.42%, and Linear Regression showed a 76.7% improvement when combined with Forward Selection. Ridge Regression also demonstrated a 72.82% enhancement. Additionally, Decision Tree, K-Nearest Neighbor, and Random Forest models showed varying levels of improvement when used with Backward Selection. The most effective technical indicators for stock price prediction were found to be Squeeze_pro, Percentage Price Oscillator, Thermo, Decay, Archer On-Balance Volume, Bollinger Bands, Squeeze, and Ichimoku. Overall, the study highlights that combining selected technical indicators with appropriate regression models can significantly enhance the accuracy and efficiency of stock price predictions. ...

October 15, 2023 · 3 min · Research Team