false

Stock Recommendations for Individual Investors: A Temporal Graph Network Approach with Mean-Variance Efficient Sampling

Stock Recommendations for Individual Investors: A Temporal Graph Network Approach with Mean-Variance Efficient Sampling ArXiv ID: 2404.07223 “View on arXiv” Authors: Unknown Abstract Recommender systems can be helpful for individuals to make well-informed decisions in complex financial markets. While many studies have focused on predicting stock prices, even advanced models fall short of accurately forecasting them. Additionally, previous studies indicate that individual investors often disregard established investment theories, favoring their personal preferences instead. This presents a challenge for stock recommendation systems, which must not only provide strong investment performance but also respect these individual preferences. To create effective stock recommender systems, three critical elements must be incorporated: 1) individual preferences, 2) portfolio diversification, and 3) the temporal dynamics of the first two. In response, we propose a new model, Portfolio Temporal Graph Network Recommender PfoTGNRec, which can handle time-varying collaborative signals and incorporates diversification-enhancing sampling. On real-world individual trading data, our approach demonstrates superior performance compared to state-of-the-art baselines, including cutting-edge dynamic embedding models and existing stock recommendation models. Indeed, we show that PfoTGNRec is an effective solution that can balance customer preferences with the need to suggest portfolios with high Return-on-Investment. The source code and data are available at https://github.com/youngandbin/PfoTGNRec. ...

March 27, 2024 · 2 min · Research Team

Temporal Graph Networks for Graph Anomaly Detection in Financial Networks

Temporal Graph Networks for Graph Anomaly Detection in Financial Networks ArXiv ID: 2404.00060 “View on arXiv” Authors: Unknown Abstract This paper explores the utilization of Temporal Graph Networks (TGN) for financial anomaly detection, a pressing need in the era of fintech and digitized financial transactions. We present a comprehensive framework that leverages TGN, capable of capturing dynamic changes in edges within financial networks, for fraud detection. Our study compares TGN’s performance against static Graph Neural Network (GNN) baselines, as well as cutting-edge hypergraph neural network baselines using DGraph dataset for a realistic financial context. Our results demonstrate that TGN significantly outperforms other models in terms of AUC metrics. This superior performance underlines TGN’s potential as an effective tool for detecting financial fraud, showcasing its ability to adapt to the dynamic and complex nature of modern financial systems. We also experimented with various graph embedding modules within the TGN framework and compared the effectiveness of each module. In conclusion, we demonstrated that, even with variations within TGN, it is possible to achieve good performance in the anomaly detection task. ...

March 27, 2024 · 2 min · Research Team