false

Quantum generative modeling for financial time series with temporal correlations

Quantum generative modeling for financial time series with temporal correlations ArXiv ID: 2507.22035 “View on arXiv” Authors: David Dechant, Eliot Schwander, Lucas van Drooge, Charles Moussa, Diego Garlaschelli, Vedran Dunjko, Jordi Tura Abstract Quantum generative adversarial networks (QGANs) have been investigated as a method for generating synthetic data with the goal of augmenting training data sets for neural networks. This is especially relevant for financial time series, since we only ever observe one realization of the process, namely the historical evolution of the market, which is further limited by data availability and the age of the market. However, for classical generative adversarial networks it has been shown that generated data may (often) not exhibit desired properties (also called stylized facts), such as matching a certain distribution or showing specific temporal correlations. Here, we investigate whether quantum correlations in quantum inspired models of QGANs can help in the generation of financial time series. We train QGANs, composed of a quantum generator and a classical discriminator, and investigate two approaches for simulating the quantum generator: a full simulation of the quantum circuits, and an approximate simulation using tensor network methods. We tested how the choice of hyperparameters, such as the circuit depth and bond dimensions, influenced the quality of the generated time series. The QGAN that we trained generate synthetic financial time series that not only match the target distribution but also exhibit the desired temporal correlations, with the quality of each property depending on the hyperparameters and simulation method. ...

July 29, 2025 · 2 min · Research Team

Boosting Binomial Exotic Option Pricing with Tensor Networks

Boosting Binomial Exotic Option Pricing with Tensor Networks ArXiv ID: 2505.17033 “View on arXiv” Authors: Maarten van Damme, Rishi Sreedhar, Martin Ganahl Abstract Pricing of exotic financial derivatives, such as Asian and multi-asset American basket options, poses significant challenges for standard numerical methods such as binomial trees or Monte Carlo methods. While the former often scales exponentially with the parameters of interest, the latter often requires expensive simulations to obtain sufficient statistical convergence. This work combines the binomial pricing method for options with tensor network techniques, specifically Matrix Product States (MPS), to overcome these challenges. Our proposed methods scale linearly with the parameters of interest and significantly reduce the computational complexity of pricing exotics compared to conventional methods. For Asian options, we present two methods: a tensor train cross approximation-based method for pricing, and a variational pricing method using MPS, which provides a stringent lower bound on option prices. For multi-asset American basket options, we combine the decoupled trees technique with the tensor train cross approximation to efficiently handle baskets of up to $m = 8$ correlated assets. All approaches scale linearly in the number of discretization steps $N$ for Asian options, and the number of assets $m$ for multi-asset options. Our numerical experiments underscore the high potential of tensor network methods as highly efficient simulation and optimization tools for financial engineering. ...

May 7, 2025 · 2 min · Research Team