false

The lexical ratio: A new perspective on portfolio diversification

The lexical ratio: A new perspective on portfolio diversification ArXiv ID: 2411.06080 “View on arXiv” Authors: Unknown Abstract Portfolio diversification, traditionally measured through asset correlations and volatilitybased metrics, is fundamental to managing financial risk. However, existing diversification metrics often overlook non-numerical relationships between assets that can impact portfolio stability, particularly during market stresses. This paper introduces the lexical ratio (LR), a novel metric that leverages textual data to capture diversification dimensions absent in standard approaches. By treating each asset as a unique document composed of sectorspecific and financial keywords, the LR evaluates portfolio diversification by distributing these terms across assets, incorporating entropy-based insights from information theory. We thoroughly analyze LR’s properties, including scale invariance, concavity, and maximality, demonstrating its theoretical robustness and ability to enhance risk-adjusted portfolio returns. Using empirical tests on S&P 500 portfolios, we compare LR’s performance to established metrics such as Markowitz’s volatility-based measures and diversification ratios. Our tests reveal LR’s superiority in optimizing portfolio returns, especially under varied market conditions. Our findings show that LR aligns with conventional metrics and captures unique diversification aspects, suggesting it is a viable tool for portfolio managers. ...

November 9, 2024 · 2 min · Research Team

From Numbers to Words: Multi-Modal Bankruptcy Prediction Using the ECL Dataset

From Numbers to Words: Multi-Modal Bankruptcy Prediction Using the ECL Dataset ArXiv ID: 2401.12652 “View on arXiv” Authors: Unknown Abstract In this paper, we present ECL, a novel multi-modal dataset containing the textual and numerical data from corporate 10K filings and associated binary bankruptcy labels. Furthermore, we develop and critically evaluate several classical and neural bankruptcy prediction models using this dataset. Our findings suggest that the information contained in each data modality is complementary for bankruptcy prediction. We also see that the binary bankruptcy prediction target does not enable our models to distinguish next year bankruptcy from an unhealthy financial situation resulting in bankruptcy in later years. Finally, we explore the use of LLMs in the context of our task. We show how GPT-based models can be used to extract meaningful summaries from the textual data but zero-shot bankruptcy prediction results are poor. All resources required to access and update the dataset or replicate our experiments are available on github.com/henriarnoUG/ECL. ...

January 23, 2024 · 2 min · Research Team