false

HQNN-FSP: A Hybrid Classical-Quantum Neural Network for Regression-Based Financial Stock Market Prediction

HQNN-FSP: A Hybrid Classical-Quantum Neural Network for Regression-Based Financial Stock Market Prediction ArXiv ID: 2503.15403 “View on arXiv” Authors: Unknown Abstract Financial time-series forecasting remains a challenging task due to complex temporal dependencies and market fluctuations. This study explores the potential of hybrid quantum-classical approaches to assist in financial trend prediction by leveraging quantum resources for improved feature representation and learning. A custom Quantum Neural Network (QNN) regressor is introduced, designed with a novel ansatz tailored for financial applications. Two hybrid optimization strategies are proposed: (1) a sequential approach where classical recurrent models (RNN/LSTM) extract temporal dependencies before quantum processing, and (2) a joint learning framework that optimizes classical and quantum parameters simultaneously. Systematic evaluation using TimeSeriesSplit, k-fold cross-validation, and predictive error analysis highlights the ability of these hybrid models to integrate quantum computing into financial forecasting workflows. The findings demonstrate how quantum-assisted learning can contribute to financial modeling, offering insights into the practical role of quantum resources in time-series analysis. ...

March 19, 2025 · 2 min · Research Team

Realized Volatility Forecasting for New Issues and Spin-Offs using Multi-Source Transfer Learning

Realized Volatility Forecasting for New Issues and Spin-Offs using Multi-Source Transfer Learning ArXiv ID: 2503.12648 “View on arXiv” Authors: Unknown Abstract Forecasting the volatility of financial assets is essential for various financial applications. This paper addresses the challenging task of forecasting the volatility of financial assets with limited historical data, such as new issues or spin-offs, by proposing a multi-source transfer learning approach. Specifically, we exploit complementary source data of assets with a substantial historical data record by selecting source time series instances that are most similar to the limited target data of the new issue/spin-off. Based on these instances and the target data, we estimate linear and non-linear realized volatility models and compare their forecasting performance to forecasts of models trained exclusively on the target data, and models trained on the entire source and target data. The results show that our transfer learning approach outperforms the alternative models and that the integration of complementary data is also beneficial immediately after the initial trading day of the new issue/spin-off. ...

March 16, 2025 · 2 min · Research Team

FinTSBridge: A New Evaluation Suite for Real-world Financial Prediction with Advanced Time Series Models

FinTSBridge: A New Evaluation Suite for Real-world Financial Prediction with Advanced Time Series Models ArXiv ID: 2503.06928 “View on arXiv” Authors: Unknown Abstract Despite the growing attention to time series forecasting in recent years, many studies have proposed various solutions to address the challenges encountered in time series prediction, aiming to improve forecasting performance. However, effectively applying these time series forecasting models to the field of financial asset pricing remains a challenging issue. There is still a need for a bridge to connect cutting-edge time series forecasting models with financial asset pricing. To bridge this gap, we have undertaken the following efforts: 1) We constructed three datasets from the financial domain; 2) We selected over ten time series forecasting models from recent studies and validated their performance in financial time series; 3) We developed new metrics, msIC and msIR, in addition to MSE and MAE, to showcase the time series correlation captured by the models; 4) We designed financial-specific tasks for these three datasets and assessed the practical performance and application potential of these forecasting models in important financial problems. We hope the developed new evaluation suite, FinTSBridge, can provide valuable insights into the effectiveness and robustness of advanced forecasting models in finanical domains. ...

March 10, 2025 · 2 min · Research Team

BiHRNN -- Bi-Directional Hierarchical Recurrent Neural Network for Inflation Forecasting

BiHRNN – Bi-Directional Hierarchical Recurrent Neural Network for Inflation Forecasting ArXiv ID: 2503.01893 “View on arXiv” Authors: Unknown Abstract Inflation prediction guides decisions on interest rates, investments, and wages, playing a key role in economic stability. Yet accurate forecasting is challenging due to dynamic factors and the layered structure of the Consumer Price Index, which organizes goods and services into multiple categories. We propose the Bi-directional Hierarchical Recurrent Neural Network (BiHRNN) model to address these challenges by leveraging the hierarchical structure to enable bidirectional information flow between levels. Informative constraints on the RNN parameters enhance predictive accuracy at all levels without the inefficiencies of a unified model. We validated BiHRNN on inflation datasets from the United States, Canada, and Norway by training, tuning hyperparameters, and experimenting with various loss functions. Our results demonstrate that BiHRNN significantly outperforms traditional RNN models, with its bidirectional architecture playing a pivotal role in achieving improved forecasting accuracy. ...

February 27, 2025 · 2 min · Research Team

Multi-Agent Stock Prediction Systems: Machine Learning Models, Simulations, and Real-Time Trading Strategies

Multi-Agent Stock Prediction Systems: Machine Learning Models, Simulations, and Real-Time Trading Strategies ArXiv ID: 2502.15853 “View on arXiv” Authors: Unknown Abstract This paper presents a comprehensive study on stock price prediction, leveragingadvanced machine learning (ML) and deep learning (DL) techniques to improve financial forecasting accuracy. The research evaluates the performance of various recurrent neural network (RNN) architectures, including Long Short-Term Memory (LSTM) networks, Gated Recurrent Units (GRU), and attention-based models. These models are assessed for their ability to capture complex temporal dependencies inherent in stock market data. Our findings show that attention-based models outperform other architectures, achieving the highest accuracy by capturing both short and long-term dependencies. This study contributes valuable insights into AI-driven financial forecasting, offering practical guidance for developing more accurate and efficient trading systems. ...

February 21, 2025 · 2 min · Research Team

Quantifying Cryptocurrency Unpredictability: A Comprehensive Study of Complexity and Forecasting

Quantifying Cryptocurrency Unpredictability: A Comprehensive Study of Complexity and Forecasting ArXiv ID: 2502.09079 “View on arXiv” Authors: Unknown Abstract This paper offers a thorough examination of the univariate predictability in cryptocurrency time-series. By exploiting a combination of complexity measure and model predictions we explore the cryptocurrencies time-series forecasting task focusing on the exchange rate in USD of Litecoin, Binance Coin, Bitcoin, Ethereum, and XRP. On one hand, to assess the complexity and the randomness of these time-series, a comparative analysis has been performed using Brownian and colored noises as a benchmark. The results obtained from the Complexity-Entropy causality plane and power density spectrum analysis reveal that cryptocurrency time-series exhibit characteristics closely resembling those of Brownian noise when analyzed in a univariate context. On the other hand, the application of a wide range of statistical, machine and deep learning models for time-series forecasting demonstrates the low predictability of cryptocurrencies. Notably, our analysis reveals that simpler models such as Naive models consistently outperform the more complex machine and deep learning ones in terms of forecasting accuracy across different forecast horizons and time windows. The combined study of complexity and forecasting accuracies highlights the difficulty of predicting the cryptocurrency market. These findings provide valuable insights into the inherent characteristics of the cryptocurrency data and highlight the need to reassess the challenges associated with predicting cryptocurrency’s price movements. ...

February 13, 2025 · 2 min · Research Team

Forecasting S&P 500 Using LSTM Models

Forecasting S&P 500 Using LSTM Models ArXiv ID: 2501.17366 “View on arXiv” Authors: Unknown Abstract With the volatile and complex nature of financial data influenced by external factors, forecasting the stock market is challenging. Traditional models such as ARIMA and GARCH perform well with linear data but struggle with non-linear dependencies. Machine learning and deep learning models, particularly Long Short-Term Memory (LSTM) networks, address these challenges by capturing intricate patterns and long-term dependencies. This report compares ARIMA and LSTM models in predicting the S&P 500 index, a major financial benchmark. Using historical price data and technical indicators, we evaluated these models using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The ARIMA model showed reasonable performance with an MAE of 462.1, RMSE of 614, and 89.8 percent accuracy, effectively capturing short-term trends but limited by its linear assumptions. The LSTM model, leveraging sequential processing capabilities, outperformed ARIMA with an MAE of 369.32, RMSE of 412.84, and 92.46 percent accuracy, capturing both short- and long-term dependencies. Notably, the LSTM model without additional features performed best, achieving an MAE of 175.9, RMSE of 207.34, and 96.41 percent accuracy, showcasing its ability to handle market data efficiently. Accurately predicting stock movements is crucial for investment strategies, risk assessments, and market stability. Our findings confirm the potential of deep learning models in handling volatile financial data compared to traditional ones. The results highlight the effectiveness of LSTM and suggest avenues for further improvements. This study provides insights into financial forecasting, offering a comparative analysis of ARIMA and LSTM while outlining their strengths and limitations. ...

January 29, 2025 · 2 min · Research Team

Forecasting of Bitcoin Prices Using Hashrate Features: Wavelet and Deep Stacking Approach

Forecasting of Bitcoin Prices Using Hashrate Features: Wavelet and Deep Stacking Approach ArXiv ID: 2501.13136 “View on arXiv” Authors: Unknown Abstract Digital currencies have become popular in the last decade due to their non-dependency and decentralized nature. The price of these currencies has seen a lot of fluctuations at times, which has increased the need for prediction. As their most popular, Bitcoin(BTC) has become a research hotspot. The main challenge and trend of digital currencies, especially BTC, is price fluctuations, which require studying the basic price prediction model. This research presents a classification and regression model based on stack deep learning that uses a wavelet to remove noise to predict movements and prices of BTC at different time intervals. The proposed model based on the stacking technique uses models based on deep learning, especially neural networks and transformers, for one, seven, thirty and ninety-day forecasting. Three feature selection models, Chi2, RFE and Embedded, were also applied to the data in the pre-processing stage. The classification model achieved 63% accuracy for predicting the next day and 64%, 67% and 82% for predicting the seventh, thirty and ninety days, respectively. For daily price forecasting, the percentage error was reduced to 0.58, while the error ranged from 2.72% to 2.85% for seven- to ninety-day horizons. These results show that the proposed model performed better than other models in the literature. ...

January 22, 2025 · 2 min · Research Team

Boosting the Accuracy of Stock Market Prediction via Multi-Layer Hybrid MTL Structure

Boosting the Accuracy of Stock Market Prediction via Multi-Layer Hybrid MTL Structure ArXiv ID: 2501.09760 “View on arXiv” Authors: Unknown Abstract Accurate stock market prediction provides great opportunities for informed decision-making, yet existing methods struggle with financial data’s non-linear, high-dimensional, and volatile characteristics. Advanced predictive models are needed to effectively address these complexities. This paper proposes a novel multi-layer hybrid multi-task learning (MTL) framework aimed at achieving more efficient stock market predictions. It involves a Transformer encoder to extract complex correspondences between various input features, a Bidirectional Gated Recurrent Unit (BiGRU) to capture long-term temporal relationships, and a Kolmogorov-Arnold Network (KAN) to enhance the learning process. Experimental evaluations indicate that the proposed learning structure achieves great performance, with an MAE as low as 1.078, a MAPE as low as 0.012, and an R^2 as high as 0.98, when compared with other competitive networks. ...

January 1, 2025 · 2 min · Research Team

Classification of Financial Data Using Quantum Support Vector Machine

Classification of Financial Data Using Quantum Support Vector Machine ArXiv ID: 2412.10860 “View on arXiv” Authors: Unknown Abstract Quantum Support Vector Machine is a kernel-based approach to classification problems. We study the applicability of quantum kernels to financial data, specifically our self-curated Dhaka Stock Exchange (DSEx) Broad Index dataset. To the best of our knowledge, this is the very first systematic research work on this dataset on the application of quantum kernel. We report empirical quantum advantage in our work, using several quantum kernels and proposing the best one for this dataset while verifying the Phase Space Terrain Ruggedness Index metric. We estimate the resources needed to carry out these investigations on a larger scale for future practitioners. ...

December 14, 2024 · 2 min · Research Team