false

Volatility Forecasting in Global Financial Markets Using TimeMixer

Volatility Forecasting in Global Financial Markets Using TimeMixer ArXiv ID: 2410.09062 “View on arXiv” Authors: Unknown Abstract Predicting volatility in financial markets, including stocks, index ETFs, foreign exchange, and cryptocurrencies, remains a challenging task due to the inherent complexity and non-linear dynamics of these time series. In this study, I apply TimeMixer, a state-of-the-art time series forecasting model, to predict the volatility of global financial assets. TimeMixer utilizes a multiscale-mixing approach that effectively captures both short-term and long-term temporal patterns by analyzing data across different scales. My empirical results reveal that while TimeMixer performs exceptionally well in short-term volatility forecasting, its accuracy diminishes for longer-term predictions, particularly in highly volatile markets. These findings highlight TimeMixer’s strength in capturing short-term volatility, making it highly suitable for practical applications in financial risk management, where precise short-term forecasts are critical. However, the model’s limitations in long-term forecasting point to potential areas for further refinement. ...

September 27, 2024 · 2 min · Research Team

Predicting Foreign Exchange EUR/USD direction using machine learning

Predicting Foreign Exchange EUR/USD direction using machine learning ArXiv ID: 2409.04471 “View on arXiv” Authors: Unknown Abstract The Foreign Exchange market is a significant market for speculators, characterized by substantial transaction volumes and high volatility. Accurately predicting the directional movement of currency pairs is essential for formulating a sound financial investment strategy. This paper conducts a comparative analysis of various machine learning models for predicting the daily directional movement of the EUR/USD currency pair in the Foreign Exchange market. The analysis includes both decorrelated and non-decorrelated feature sets using Principal Component Analysis. Additionally, this study explores meta-estimators, which involve stacking multiple estimators as input for another estimator, aiming to achieve improved predictive performance. Ultimately, our approach yielded a prediction accuracy of 58.52% for one-day ahead forecasts, coupled with an annual return of 32.48% for the year 2022. ...

September 4, 2024 · 2 min · Research Team

Enhancing Startup Success Predictions in Venture Capital: A GraphRAG Augmented Multivariate Time Series Method

Enhancing Startup Success Predictions in Venture Capital: A GraphRAG Augmented Multivariate Time Series Method ArXiv ID: 2408.09420 “View on arXiv” Authors: Unknown Abstract In the Venture Capital (VC) industry, predicting the success of startups is challenging due to limited financial data and the need for subjective revenue forecasts. Previous methods based on time series analysis often fall short as they fail to incorporate crucial inter-company relationships such as competition and collaboration. To fill the gap, this paper aims to introduce a novel approach using GraphRAG augmented time series model. With GraphRAG, time series predictive methods are enhanced by integrating these vital relationships into the analysis framework, allowing for a more dynamic understanding of the startup ecosystem in venture capital. Our experimental results demonstrate that our model significantly outperforms previous models in startup success predictions. ...

August 18, 2024 · 2 min · Research Team

Hedge Fund Portfolio Construction Using PolyModel Theory and iTransformer

Hedge Fund Portfolio Construction Using PolyModel Theory and iTransformer ArXiv ID: 2408.03320 “View on arXiv” Authors: Unknown Abstract When constructing portfolios, a key problem is that a lot of financial time series data are sparse, making it challenging to apply machine learning methods. Polymodel theory can solve this issue and demonstrate superiority in portfolio construction from various aspects. To implement the PolyModel theory for constructing a hedge fund portfolio, we begin by identifying an asset pool, utilizing over 10,000 hedge funds for the past 29 years’ data. PolyModel theory also involves choosing a wide-ranging set of risk factors, which includes various financial indices, currencies, and commodity prices. This comprehensive selection mirrors the complexities of the real-world environment. Leveraging on the PolyModel theory, we create quantitative measures such as Long-term Alpha, Long-term Ratio, and SVaR. We also use more classical measures like the Sharpe ratio or Morningstar’s MRAR. To enhance the performance of the constructed portfolio, we also employ the latest deep learning techniques (iTransformer) to capture the upward trend, while efficiently controlling the downside, using all the features. The iTransformer model is specifically designed to address the challenges in high-dimensional time series forecasting and could largely improve our strategies. More precisely, our strategies achieve better Sharpe ratio and annualized return. The above process enables us to create multiple portfolio strategies aiming for high returns and low risks when compared to various benchmarks. ...

August 6, 2024 · 2 min · Research Team

Designing Time-Series Models With Hypernetworks & Adversarial Portfolios

Designing Time-Series Models With Hypernetworks & Adversarial Portfolios ArXiv ID: 2407.20352 “View on arXiv” Authors: Unknown Abstract This article describes the methods that achieved 4th and 6th place in the forecasting and investment challenges, respectively, of the M6 competition, ultimately securing the 1st place in the overall duathlon ranking. In the forecasting challenge, we tested a novel meta-learning model that utilizes hypernetworks to design a parametric model tailored to a specific family of forecasting tasks. This approach allowed us to leverage similarities observed across individual forecasting tasks while also acknowledging potential heterogeneity in their data generating processes. The model’s training can be directly performed with backpropagation, eliminating the need for reliance on higher-order derivatives and is equivalent to a simultaneous search over the space of parametric functions and their optimal parameter values. The proposed model’s capabilities extend beyond M6, demonstrating superiority over state-of-the-art meta-learning methods in the sinusoidal regression task and outperforming conventional parametric models on time-series from the M4 competition. In the investment challenge, we adjusted portfolio weights to induce greater or smaller correlation between our submission and that of other participants, depending on the current ranking, aiming to maximize the probability of achieving a good rank. ...

July 29, 2024 · 2 min · Research Team

GraphCNNpred: A stock market indices prediction using a Graph based deep learning system

GraphCNNpred: A stock market indices prediction using a Graph based deep learning system ArXiv ID: 2407.03760 “View on arXiv” Authors: Unknown Abstract The application of deep learning techniques for predicting stock market prices is a prominent and widely researched topic in the field of data science. To effectively predict market trends, it is essential to utilize a diversified dataset. In this paper, we give a graph neural network based convolutional neural network (CNN) model, that can be applied on diverse source of data, in the attempt to extract features to predict the trends of indices of \text{“S”}&\text{“P”} 500, NASDAQ, DJI, NYSE, and RUSSEL. The experiments show that the associated models improve the performance of prediction in all indices over the baseline algorithms by about $4% \text{" to “} 15%$, in terms of F-measure. A trading simulation is generated from predictions and gained a Sharpe ratio of over 3. ...

July 4, 2024 · 2 min · Research Team

Indian Stock Market Prediction using Augmented Financial Intelligence ML

Indian Stock Market Prediction using Augmented Financial Intelligence ML ArXiv ID: 2407.02236 “View on arXiv” Authors: Unknown Abstract This paper presents price prediction models using Machine Learning algorithms augmented with Superforecasters predictions, aimed at enhancing investment decisions. Five Machine Learning models are built, including Bidirectional LSTM, ARIMA, a combination of CNN and LSTM, GRU, and a model built using LSTM and GRU algorithms. The models are evaluated using the Mean Absolute Error to determine their predictive accuracy. Additionally, the paper suggests incorporating human intelligence by identifying Superforecasters and tracking their predictions to anticipate unpredictable shifts or changes in stock prices . The predictions made by these users can further enhance the accuracy of stock price predictions when combined with Machine Learning and Natural Language Processing techniques. Predicting the price of any commodity can be a significant task but predicting the price of a stock in the stock market deals with much more uncertainty. Recognising the limited knowledge and exposure to stocks among certain investors, this paper proposes price prediction models using Machine Learning algorithms. In this work, five Machine learning models are built using Bidirectional LSTM, ARIMA, a combination of CNN and LSTM, GRU and the last one is built using LSTM and GRU algorithms. Later these models are assessed using MAE scores to find which model is predicting with the highest accuracy. In addition to this, this paper also suggests the use of human intelligence to closely predict the shift in price patterns in the stock market The main goal is to identify Superforecasters and track their predictions to anticipate unpredictable shifts or changes in stock prices. By leveraging the combined power of Machine Learning and the Human Intelligence, predictive accuracy can be significantly increased. ...

July 2, 2024 · 2 min · Research Team

Filtered not Mixed: Stochastic Filtering-Based Online Gating for Mixture of Large Language Models

Filtered not Mixed: Stochastic Filtering-Based Online Gating for Mixture of Large Language Models ArXiv ID: 2406.02969 “View on arXiv” Authors: Unknown Abstract We propose MoE-F - a formalized mechanism for combining $N$ pre-trained Large Language Models (LLMs) for online time-series prediction by adaptively forecasting the best weighting of LLM predictions at every time step. Our mechanism leverages the conditional information in each expert’s running performance to forecast the best combination of LLMs for predicting the time series in its next step. Diverging from static (learned) Mixture of Experts (MoE) methods, our approach employs time-adaptive stochastic filtering techniques to combine experts. By framing the expert selection problem as a finite state-space, continuous-time Hidden Markov model (HMM), we can leverage the Wohman-Shiryaev filter. Our approach first constructs N parallel filters corresponding to each of the $N$ individual LLMs. Each filter proposes its best combination of LLMs, given the information that they have access to. Subsequently, the N filter outputs are optimally aggregated to maximize their robust predictive power, and this update is computed efficiently via a closed-form expression, generating our ensemble predictor. Our contributions are: (I) the MoE-F plug-and-play filtering harness algorithm, (II) theoretical optimality guarantees of the proposed filtering-based gating algorithm (via optimality guarantees for its parallel Bayesian filtering and its robust aggregation steps), and (III) empirical evaluation and ablative results using state-of-the-art foundational and MoE LLMs on a real-world Financial Market Movement task where MoE-F attains a remarkable 17% absolute and 48.5% relative F1 measure improvement over the next best performing individual LLM expert predicting short-horizon market movement based on streaming news. Further, we provide empirical evidence of substantial performance gains in applying MoE-F over specialized models in the long-horizon time-series forecasting domain. ...

June 5, 2024 · 3 min · Research Team

Comparative Study of Bitcoin Price Prediction

Comparative Study of Bitcoin Price Prediction ArXiv ID: 2405.08089 “View on arXiv” Authors: Unknown Abstract Prediction of stock prices has been a crucial and challenging task, especially in the case of highly volatile digital currencies such as Bitcoin. This research examineS the potential of using neural network models, namely LSTMs and GRUs, to forecast Bitcoin’s price movements. We employ five-fold cross-validation to enhance generalization and utilize L2 regularization to reduce overfitting and noise. Our study demonstrates that the GRUs models offer better accuracy than LSTMs model for predicting Bitcoin’s price. Specifically, the GRU model has an MSE of 4.67, while the LSTM model has an MSE of 6.25 when compared to the actual prices in the test set data. This finding indicates that GRU models are better equipped to process sequential data with long-term dependencies, a characteristic of financial time series data such as Bitcoin prices. In summary, our results provide valuable insights into the potential of neural network models for accurate Bitcoin price prediction and emphasize the importance of employing appropriate regularization techniques to enhance model performance. ...

May 13, 2024 · 2 min · Research Team

Kernel Three Pass Regression Filter

Kernel Three Pass Regression Filter ArXiv ID: 2405.07292 “View on arXiv” Authors: Unknown Abstract We forecast a single time series using a high-dimensional set of predictors. When these predictors share common underlying dynamics, an approximate latent factor model provides a powerful characterization of their co-movements Bai(2003). These latent factors succinctly summarize the data and can also be used for prediction, alleviating the curse of dimensionality in high-dimensional prediction exercises, see Stock & Watson (2002a). However, forecasting using these latent factors suffers from two potential drawbacks. First, not all pervasive factors among the set of predictors may be relevant, and using all of them can lead to inefficient forecasts. The second shortcoming is the assumption of linear dependence of predictors on the underlying factors. The first issue can be addressed by using some form of supervision, which leads to the omission of irrelevant information. One example is the three-pass regression filter proposed by Kelly & Pruitt (2015). We extend their framework to cases where the form of dependence might be nonlinear by developing a new estimator, which we refer to as the Kernel Three-Pass Regression Filter (K3PRF). This alleviates the aforementioned second shortcoming. The estimator is computationally efficient and performs well empirically. The short-term performance matches or exceeds that of established models, while the long-term performance shows significant improvement. ...

May 12, 2024 · 2 min · Research Team