false

Transformers with Attentive Federated Aggregation for Time Series Stock Forecasting

Transformers with Attentive Federated Aggregation for Time Series Stock Forecasting ArXiv ID: 2402.06638 “View on arXiv” Authors: Unknown Abstract Recent innovations in transformers have shown their superior performance in natural language processing (NLP) and computer vision (CV). The ability to capture long-range dependencies and interactions in sequential data has also triggered a great interest in time series modeling, leading to the widespread use of transformers in many time series applications. However, being the most common and crucial application, the adaptation of transformers to time series forecasting has remained limited, with both promising and inconsistent results. In contrast to the challenges in NLP and CV, time series problems not only add the complexity of order or temporal dependence among input sequences but also consider trend, level, and seasonality information that much of this data is valuable for decision making. The conventional training scheme has shown deficiencies regarding model overfitting, data scarcity, and privacy issues when working with transformers for a forecasting task. In this work, we propose attentive federated transformers for time series stock forecasting with better performance while preserving the privacy of participating enterprises. Empirical results on various stock data from the Yahoo! Finance website indicate the superiority of our proposed scheme in dealing with the above challenges and data heterogeneity in federated learning. ...

January 22, 2024 · 2 min · Research Team

MDGNN: Multi-Relational Dynamic Graph Neural Network for Comprehensive and Dynamic Stock Investment Prediction

MDGNN: Multi-Relational Dynamic Graph Neural Network for Comprehensive and Dynamic Stock Investment Prediction ArXiv ID: 2402.06633 “View on arXiv” Authors: Unknown Abstract The stock market is a crucial component of the financial system, but predicting the movement of stock prices is challenging due to the dynamic and intricate relations arising from various aspects such as economic indicators, financial reports, global news, and investor sentiment. Traditional sequential methods and graph-based models have been applied in stock movement prediction, but they have limitations in capturing the multifaceted and temporal influences in stock price movements. To address these challenges, the Multi-relational Dynamic Graph Neural Network (MDGNN) framework is proposed, which utilizes a discrete dynamic graph to comprehensively capture multifaceted relations among stocks and their evolution over time. The representation generated from the graph offers a complete perspective on the interrelationships among stocks and associated entities. Additionally, the power of the Transformer structure is leveraged to encode the temporal evolution of multiplex relations, providing a dynamic and effective approach to predicting stock investment. Further, our proposed MDGNN framework achieves the best performance in public datasets compared with state-of-the-art (SOTA) stock investment methods. ...

January 19, 2024 · 2 min · Research Team

Forecasting Cryptocurrency Staking Rewards

Forecasting Cryptocurrency Staking Rewards ArXiv ID: 2401.10931 “View on arXiv” Authors: Unknown Abstract This research explores a relatively unexplored area of predicting cryptocurrency staking rewards, offering potential insights to researchers and investors. We investigate two predictive methodologies: a) a straightforward sliding-window average, and b) linear regression models predicated on historical data. The findings reveal that ETH staking rewards can be forecasted with an RMSE within 0.7% and 1.1% of the mean value for 1-day and 7-day look-aheads respectively, using a 7-day sliding-window average approach. Additionally, we discern diverse prediction accuracies across various cryptocurrencies, including SOL, XTZ, ATOM, and MATIC. Linear regression is identified as superior to the moving-window average for perdicting in the short term for XTZ and ATOM. The results underscore the generally stable and predictable nature of staking rewards for most assets, with MATIC presenting a noteworthy exception. ...

January 16, 2024 · 2 min · Research Team

An adaptive network-based approach for advanced forecasting of cryptocurrency values

An adaptive network-based approach for advanced forecasting of cryptocurrency values ArXiv ID: 2401.05441 “View on arXiv” Authors: Unknown Abstract This paper describes an architecture for predicting the price of cryptocurrencies for the next seven days using the Adaptive Network Based Fuzzy Inference System (ANFIS). Historical data of cryptocurrencies and indexes that are considered are Bitcoin (BTC), Ethereum (ETH), Bitcoin Dominance (BTC.D), and Ethereum Dominance (ETH.D) in a daily timeframe. The methods used to teach the data are hybrid and backpropagation algorithms, as well as grid partition, subtractive clustering, and Fuzzy C-means clustering (FCM) algorithms, which are used in data clustering. The architectural performance designed in this paper has been compared with different inputs and neural network models in terms of statistical evaluation criteria. Finally, the proposed method can predict the price of digital currencies in a short time. ...

January 8, 2024 · 2 min · Research Team

Multi-relational Graph Diffusion Neural Network with Parallel Retention for Stock Trends Classification

Multi-relational Graph Diffusion Neural Network with Parallel Retention for Stock Trends Classification ArXiv ID: 2401.05430 “View on arXiv” Authors: Unknown Abstract Stock trend classification remains a fundamental yet challenging task, owing to the intricate time-evolving dynamics between and within stocks. To tackle these two challenges, we propose a graph-based representation learning approach aimed at predicting the future movements of multiple stocks. Initially, we model the complex time-varying relationships between stocks by generating dynamic multi-relational stock graphs. This is achieved through a novel edge generation algorithm that leverages information entropy and signal energy to quantify the intensity and directionality of inter-stock relations on each trading day. Then, we further refine these initial graphs through a stochastic multi-relational diffusion process, adaptively learning task-optimal edges. Subsequently, we implement a decoupled representation learning scheme with parallel retention to obtain the final graph representation. This strategy better captures the unique temporal features within individual stocks while also capturing the overall structure of the stock graph. Comprehensive experiments conducted on real-world datasets from two US markets (NASDAQ and NYSE) and one Chinese market (Shanghai Stock Exchange: SSE) validate the effectiveness of our method. Our approach consistently outperforms state-of-the-art baselines in forecasting next trading day stock trends across three test periods spanning seven years. Datasets and code have been released (https://github.com/pixelhero98/MGDPR). ...

January 5, 2024 · 2 min · Research Team

Financial Time-Series Forecasting: Towards Synergizing Performance And Interpretability Within a Hybrid Machine Learning Approach

Financial Time-Series Forecasting: Towards Synergizing Performance And Interpretability Within a Hybrid Machine Learning Approach ArXiv ID: 2401.00534 “View on arXiv” Authors: Unknown Abstract In the realm of cryptocurrency, the prediction of Bitcoin prices has garnered substantial attention due to its potential impact on financial markets and investment strategies. This paper propose a comparative study on hybrid machine learning algorithms and leverage on enhancing model interpretability. Specifically, linear regression(OLS, LASSO), long-short term memory(LSTM), decision tree regressors are introduced. Through the grounded experiments, we observe linear regressor achieves the best performance among candidate models. For the interpretability, we carry out a systematic overview on the preprocessing techniques of time-series statistics, including decomposition, auto-correlational function, exponential triple forecasting, which aim to excavate latent relations and complex patterns appeared in the financial time-series forecasting. We believe this work may derive more attention and inspire more researches in the realm of time-series analysis and its realistic applications. ...

December 31, 2023 · 2 min · Research Team

Hawkes-based cryptocurrency forecasting via Limit Order Book data

Hawkes-based cryptocurrency forecasting via Limit Order Book data ArXiv ID: 2312.16190 “View on arXiv” Authors: Unknown Abstract Accurately forecasting the direction of financial returns poses a formidable challenge, given the inherent unpredictability of financial time series. The task becomes even more arduous when applied to cryptocurrency returns, given the chaotic and intricately complex nature of crypto markets. In this study, we present a novel prediction algorithm using limit order book (LOB) data rooted in the Hawkes model, a category of point processes. Coupled with a continuous output error (COE) model, our approach offers a precise forecast of return signs by leveraging predictions of future financial interactions. Capitalizing on the non-uniformly sampled structure of the original time series, our strategy surpasses benchmark models in both prediction accuracy and cumulative profit when implemented in a trading environment. The efficacy of our approach is validated through Monte Carlo simulations across 50 scenarios. The research draws on LOB measurements from a centralized cryptocurrency exchange where the stablecoin Tether is exchanged against the U.S. dollar. ...

December 21, 2023 · 2 min · Research Team

Application Research of Spline Interpolation and ARIMA in the Field of Stock Market Forecasting

Application Research of Spline Interpolation and ARIMA in the Field of Stock Market Forecasting ArXiv ID: 2311.10759 “View on arXiv” Authors: Unknown Abstract The ARIMA (Autoregressive Integrated Moving Average model) has extensive applications in the field of time series forecasting. However, the predictive performance of the ARIMA model is limited when dealing with data gaps or significant noise. Based on previous research, we have found that cubic spline interpolation performs well in capturing the smooth changes of stock price curves, especially when the market trends are relatively stable. Therefore, this paper integrates the two approaches by taking the time series data in stock trading as an example, establishes a time series forecasting model based on cubic spline interpolation and ARIMA. Through validation, the model has demonstrated certain guidance and reference value for short-term time series forecasting. ...

November 14, 2023 · 2 min · Research Team

A Data-driven Deep Learning Approach for Bitcoin Price Forecasting

A Data-driven Deep Learning Approach for Bitcoin Price Forecasting ArXiv ID: 2311.06280 “View on arXiv” Authors: Unknown Abstract Bitcoin as a cryptocurrency has been one of the most important digital coins and the first decentralized digital currency. Deep neural networks, on the other hand, has shown promising results recently; however, we require huge amount of high-quality data to leverage their power. There are some techniques such as augmentation that can help us with increasing the dataset size, but we cannot exploit them on historical bitcoin data. As a result, we propose a shallow Bidirectional-LSTM (Bi-LSTM) model, fed with feature engineered data using our proposed method to forecast bitcoin closing prices in a daily time frame. We compare the performance with that of other forecasting methods, and show that with the help of the proposed feature engineering method, a shallow deep neural network outperforms other popular price forecasting models. ...

October 27, 2023 · 2 min · Research Team

Stock Market Directional Bias Prediction Using ML Algorithms

Stock Market Directional Bias Prediction Using ML Algorithms ArXiv ID: 2310.16855 “View on arXiv” Authors: Unknown Abstract The stock market has been established since the 13th century, but in the current epoch of time, it is substantially more practicable to anticipate the stock market than it was at any other point in time due to the tools and data that are available for both traditional and algorithmic trading. There are many different machine learning models that can do time-series forecasting in the context of machine learning. These models can be used to anticipate the future prices of assets and/or the directional bias of assets. In this study, we examine and contrast the effectiveness of three different machine learning algorithms, namely, logistic regression, decision tree, and random forest to forecast the movement of the assets traded on the Japanese stock market. In addition, the models are compared to a feed forward deep neural network, and it is found that all of the models consistently reach above 50% in directional bias forecasting for the stock market. The results of our study contribute to a better understanding of the complexity involved in stock market forecasting and give insight on the possible role that machine learning could play in this context. ...

October 24, 2023 · 2 min · Research Team