false

CTBench: Cryptocurrency Time Series Generation Benchmark

CTBench: Cryptocurrency Time Series Generation Benchmark ArXiv ID: 2508.02758 “View on arXiv” Authors: Yihao Ang, Qiang Wang, Qiang Huang, Yifan Bao, Xinyu Xi, Anthony K. H. Tung, Chen Jin, Zhiyong Huang Abstract Synthetic time series are essential tools for data augmentation, stress testing, and algorithmic prototyping in quantitative finance. However, in cryptocurrency markets, characterized by 24/7 trading, extreme volatility, and rapid regime shifts, existing Time Series Generation (TSG) methods and benchmarks often fall short, jeopardizing practical utility. Most prior work (1) targets non-financial or traditional financial domains, (2) focuses narrowly on classification and forecasting while neglecting crypto-specific complexities, and (3) lacks critical financial evaluations, particularly for trading applications. To address these gaps, we introduce \textsf{“CTBench”}, the first comprehensive TSG benchmark tailored for the cryptocurrency domain. \textsf{“CTBench”} curates an open-source dataset from 452 tokens and evaluates TSG models across 13 metrics spanning 5 key dimensions: forecasting accuracy, rank fidelity, trading performance, risk assessment, and computational efficiency. A key innovation is a dual-task evaluation framework: (1) the \emph{“Predictive Utility”} task measures how well synthetic data preserves temporal and cross-sectional patterns for forecasting, while (2) the \emph{“Statistical Arbitrage”} task assesses whether reconstructed series support mean-reverting signals for trading. We benchmark eight representative models from five methodological families over four distinct market regimes, uncovering trade-offs between statistical fidelity and real-world profitability. Notably, \textsf{“CTBench”} offers model ranking analysis and actionable guidance for selecting and deploying TSG models in crypto analytics and strategy development. ...

August 3, 2025 · 2 min · Research Team

Generation of synthetic financial time series by diffusion models

Generation of synthetic financial time series by diffusion models ArXiv ID: 2410.18897 “View on arXiv” Authors: Unknown Abstract Despite its practical significance, generating realistic synthetic financial time series is challenging due to statistical properties known as stylized facts, such as fat tails, volatility clustering, and seasonality patterns. Various generative models, including generative adversarial networks (GANs) and variational autoencoders (VAEs), have been employed to address this challenge, although no model yet satisfies all the stylized facts. We alternatively propose utilizing diffusion models, specifically denoising diffusion probabilistic models (DDPMs), to generate synthetic financial time series. This approach employs wavelet transformation to convert multiple time series (into images), such as stock prices, trading volumes, and spreads. Given these converted images, the model gains the ability to generate images that can be transformed back into realistic time series by inverse wavelet transformation. We demonstrate that our proposed approach satisfies stylized facts. ...

October 24, 2024 · 2 min · Research Team

Stock Volume Forecasting with Advanced Information by Conditional Variational Auto-Encoder

Stock Volume Forecasting with Advanced Information by Conditional Variational Auto-Encoder ArXiv ID: 2406.19414 “View on arXiv” Authors: Unknown Abstract We demonstrate the use of Conditional Variational Encoder (CVAE) to improve the forecasts of daily stock volume time series in both short and long term forecasting tasks, with the use of advanced information of input variables such as rebalancing dates. CVAE generates non-linear time series as out-of-sample forecasts, which have better accuracy and closer fit of correlation to the actual data, compared to traditional linear models. These generative forecasts can also be used for scenario generation, which aids interpretation. We further discuss correlations in non-stationary time series and other potential extensions from the CVAE forecasts. ...

June 19, 2024 · 2 min · Research Team

Deep Generative Modeling for Financial Time Series with Application in VaR: A Comparative Review

Deep Generative Modeling for Financial Time Series with Application in VaR: A Comparative Review ArXiv ID: 2401.10370 “View on arXiv” Authors: Unknown Abstract In the financial services industry, forecasting the risk factor distribution conditional on the history and the current market environment is the key to market risk modeling in general and value at risk (VaR) model in particular. As one of the most widely adopted VaR models in commercial banks, Historical simulation (HS) uses the empirical distribution of daily returns in a historical window as the forecast distribution of risk factor returns in the next day. The objectives for financial time series generation are to generate synthetic data paths with good variety, and similar distribution and dynamics to the original historical data. In this paper, we apply multiple existing deep generative methods (e.g., CGAN, CWGAN, Diffusion, and Signature WGAN) for conditional time series generation, and propose and test two new methods for conditional multi-step time series generation, namely Encoder-Decoder CGAN and Conditional TimeVAE. Furthermore, we introduce a comprehensive framework with a set of KPIs to measure the quality of the generated time series for financial modeling. The KPIs cover distribution distance, autocorrelation and backtesting. All models (HS, parametric and neural networks) are tested on both historical USD yield curve data and additional data simulated from GARCH and CIR processes. The study shows that top performing models are HS, GARCH and CWGAN models. Future research directions in this area are also discussed. ...

January 18, 2024 · 3 min · Research Team

Market-GAN: Adding Control to Financial Market Data Generation with Semantic Context

Market-GAN: Adding Control to Financial Market Data Generation with Semantic Context ArXiv ID: 2309.07708 “View on arXiv” Authors: Unknown Abstract Financial simulators play an important role in enhancing forecasting accuracy, managing risks, and fostering strategic financial decision-making. Despite the development of financial market simulation methodologies, existing frameworks often struggle with adapting to specialized simulation context. We pinpoint the challenges as i) current financial datasets do not contain context labels; ii) current techniques are not designed to generate financial data with context as control, which demands greater precision compared to other modalities; iii) the inherent difficulties in generating context-aligned, high-fidelity data given the non-stationary, noisy nature of financial data. To address these challenges, our contributions are: i) we proposed the Contextual Market Dataset with market dynamics, stock ticker, and history state as context, leveraging a market dynamics modeling method that combines linear regression and Dynamic Time Warping clustering to extract market dynamics; ii) we present Market-GAN, a novel architecture incorporating a Generative Adversarial Networks (GAN) for the controllable generation with context, an autoencoder for learning low-dimension features, and supervisors for knowledge transfer; iii) we introduce a two-stage training scheme to ensure that Market-GAN captures the intrinsic market distribution with multiple objectives. In the pertaining stage, with the use of the autoencoder and supervisors, we prepare the generator with a better initialization for the adversarial training stage. We propose a set of holistic evaluation metrics that consider alignment, fidelity, data usability on downstream tasks, and market facts. We evaluate Market-GAN with the Dow Jones Industrial Average data from 2000 to 2023 and showcase superior performance in comparison to 4 state-of-the-art time-series generative models. ...

September 14, 2023 · 3 min · Research Team

Non-adversarial training of Neural SDEs with signature kernel scores

Non-adversarial training of Neural SDEs with signature kernel scores ArXiv ID: 2305.16274 “View on arXiv” Authors: Unknown Abstract Neural SDEs are continuous-time generative models for sequential data. State-of-the-art performance for irregular time series generation has been previously obtained by training these models adversarially as GANs. However, as typical for GAN architectures, training is notoriously unstable, often suffers from mode collapse, and requires specialised techniques such as weight clipping and gradient penalty to mitigate these issues. In this paper, we introduce a novel class of scoring rules on pathspace based on signature kernels and use them as objective for training Neural SDEs non-adversarially. By showing strict properness of such kernel scores and consistency of the corresponding estimators, we provide existence and uniqueness guarantees for the minimiser. With this formulation, evaluating the generator-discriminator pair amounts to solving a system of linear path-dependent PDEs which allows for memory-efficient adjoint-based backpropagation. Moreover, because the proposed kernel scores are well-defined for paths with values in infinite dimensional spaces of functions, our framework can be easily extended to generate spatiotemporal data. Our procedure permits conditioning on a rich variety of market conditions and significantly outperforms alternative ways of training Neural SDEs on a variety of tasks including the simulation of rough volatility models, the conditional probabilistic forecasts of real-world forex pairs where the conditioning variable is an observed past trajectory, and the mesh-free generation of limit order book dynamics. ...

May 25, 2023 · 2 min · Research Team