false

Spiking Neural Network for Cross-Market Portfolio Optimization in Financial Markets: A Neuromorphic Computing Approach

Spiking Neural Network for Cross-Market Portfolio Optimization in Financial Markets: A Neuromorphic Computing Approach ArXiv ID: 2510.15921 “View on arXiv” Authors: Amarendra Mohan, Ameer Tamoor Khan, Shuai Li, Xinwei Cao, Zhibin Li Abstract Cross-market portfolio optimization has become increasingly complex with the globalization of financial markets and the growth of high-frequency, multi-dimensional datasets. Traditional artificial neural networks, while effective in certain portfolio management tasks, often incur substantial computational overhead and lack the temporal processing capabilities required for large-scale, multi-market data. This study investigates the application of Spiking Neural Networks (SNNs) for cross-market portfolio optimization, leveraging neuromorphic computing principles to process equity data from both the Indian (Nifty 500) and US (S&P 500) markets. A five-year dataset comprising approximately 1,250 trading days of daily stock prices was systematically collected via the Yahoo Finance API. The proposed framework integrates Leaky Integrate-andFire neuron dynamics with adaptive thresholding, spike-timingdependent plasticity, and lateral inhibition to enable event-driven processing of financial time series. Dimensionality reduction is achieved through hierarchical clustering, while populationbased spike encoding and multiple decoding strategies support robust portfolio construction under realistic trading constraints, including cardinality limits, transaction costs, and adaptive risk aversion. Experimental evaluation demonstrates that the SNN-based framework delivers superior risk-adjusted returns and reduced volatility compared to ANN benchmarks, while substantially improving computational efficiency. These findings highlight the promise of neuromorphic computation for scalable, efficient, and robust portfolio optimization across global financial markets. ...

October 1, 2025 · 2 min · Research Team

Asset Pricing in Pre-trained Transformer

Asset Pricing in Pre-trained Transformer ArXiv ID: 2505.01575 “View on arXiv” Authors: Shanyan Lai Abstract This paper proposes an innovative Transformer model, Single-directional representative from Transformer (SERT), for US large capital stock pricing. It also innovatively applies the pre-trained Transformer models under the stock pricing and factor investment context. They are compared with standard Transformer models and encoder-only Transformer models in three periods covering the entire COVID-19 pandemic to examine the model adaptivity and suitability during the extreme market fluctuations. Namely, pre-COVID-19 period (mild up-trend), COVID-19 period (sharp up-trend with deep down shock) and 1-year post-COVID-19 (high fluctuation sideways movement). The best proposed SERT model achieves the highest out-of-sample R2, 11.2% and 10.91% respectively, when extreme market fluctuation takes place followed by pre-trained Transformer models (10.38% and 9.15%). Their Trend-following-based strategy wise performance also proves their excellent capability for hedging downside risks during market shocks. The proposed SERT model achieves a Sortino ratio 47% higher than the buy-and-hold benchmark in the equal-weighted portfolio and 28% higher in the value-weighted portfolio when the pandemic period is attended. It proves that Transformer models have a great capability to capture patterns of temporal sparsity data in the asset pricing factor model, especially with considerable volatilities. We also find the softmax signal filter as the common configuration of Transformer models in alternative contexts, which only eliminates differences between models, but does not improve strategy-wise performance, while increasing attention heads improve the model performance insignificantly and applying the ’layer norm first’ method do not boost the model performance in our case. ...

May 2, 2025 · 2 min · Research Team

Developing Cryptocurrency Trading Strategy Based on Autoencoder-CNN-GANs Algorithms

Developing Cryptocurrency Trading Strategy Based on Autoencoder-CNN-GANs Algorithms ArXiv ID: 2412.18202 “View on arXiv” Authors: Unknown Abstract This paper leverages machine learning algorithms to forecast and analyze financial time series. The process begins with a denoising autoencoder to filter out random noise fluctuations from the main contract price data. Then, one-dimensional convolution reduces the dimensionality of the filtered data and extracts key information. The filtered and dimensionality-reduced price data is fed into a GANs network, and its output serve as input of a fully connected network. Through cross-validation, a model is trained to capture features that precede large price fluctuations. The model predicts the likelihood and direction of significant price changes in real-time price sequences, placing trades at moments of high prediction accuracy. Empirical results demonstrate that using autoencoders and convolution to filter and denoise financial data, combined with GANs, achieves a certain level of predictive performance, validating the capabilities of machine learning algorithms to discover underlying patterns in financial sequences. Keywords - CNN;GANs; Cryptocurrency; Prediction. ...

December 24, 2024 · 2 min · Research Team

Time Series Feature Redundancy Paradox: An Empirical Study Based on Mortgage Default Prediction

Time Series Feature Redundancy Paradox: An Empirical Study Based on Mortgage Default Prediction ArXiv ID: 2501.00034 “View on arXiv” Authors: Unknown Abstract With the widespread application of machine learning in financial risk management, conventional wisdom suggests that longer training periods and more feature variables contribute to improved model performance. This paper, focusing on mortgage default prediction, empirically discovers a phenomenon that contradicts traditional knowledge: in time series prediction, increased training data timespan and additional non-critical features actually lead to significant deterioration in prediction effectiveness. Using Fannie Mae’s mortgage data, the study compares predictive performance across different time window lengths (2012-2022) and feature combinations, revealing that shorter time windows (such as single-year periods) paired with carefully selected key features yield superior prediction results. The experimental results indicate that extended time spans may introduce noise from historical data and outdated market patterns, while excessive non-critical features interfere with the model’s learning of core default factors. This research not only challenges the traditional “more is better” approach in data modeling but also provides new insights and practical guidance for feature selection and time window optimization in financial risk prediction. ...

December 23, 2024 · 2 min · Research Team

Leveraging Time Series Categorization and Temporal Fusion Transformers to Improve Cryptocurrency Price Forecasting

Leveraging Time Series Categorization and Temporal Fusion Transformers to Improve Cryptocurrency Price Forecasting ArXiv ID: 2412.14529 “View on arXiv” Authors: Unknown Abstract Organizing and managing cryptocurrency portfolios and decision-making on transactions is crucial in this market. Optimal selection of assets is one of the main challenges that requires accurate prediction of the price of cryptocurrencies. In this work, we categorize the financial time series into several similar subseries to increase prediction accuracy by learning each subseries category with similar behavior. For each category of the subseries, we create a deep learning model based on the attention mechanism to predict the next step of each subseries. Due to the limited amount of cryptocurrency data for training models, if the number of categories increases, the amount of training data for each model will decrease, and some complex models will not be trained well due to the large number of parameters. To overcome this challenge, we propose to combine the time series data of other cryptocurrencies to increase the amount of data for each category, hence increasing the accuracy of the models corresponding to each category. ...

December 19, 2024 · 2 min · Research Team

From Votes to Volatility Predicting the Stock Market on Election Day

From Votes to Volatility Predicting the Stock Market on Election Day ArXiv ID: 2412.11192 “View on arXiv” Authors: Unknown Abstract Stock market forecasting has been a topic of extensive research, aiming to provide investors with optimal stock recommendations for higher returns. In recent years, this field has gained even more attention due to the widespread adoption of deep learning models. While these models have achieved impressive accuracy in predicting stock behavior, tailoring them to specific scenarios has become increasingly important. Election Day represents one such critical scenario, characterized by intensified market volatility, as the winning candidate’s policies significantly impact various economic sectors and companies. To address this challenge, we propose the Election Day Stock Market Forecasting (EDSMF) Model. Our approach leverages the contextual capabilities of large language models alongside specialized agents designed to analyze the political and economic consequences of elections. By building on a state-of-the-art architecture, we demonstrate that EDSMF improves the predictive performance of the S&P 500 during this uniquely volatile day. ...

December 15, 2024 · 2 min · Research Team

LLMs for Time Series: an Application for Single Stocks and Statistical Arbitrage

LLMs for Time Series: an Application for Single Stocks and Statistical Arbitrage ArXiv ID: 2412.09394 “View on arXiv” Authors: Unknown Abstract Recently, LLMs (Large Language Models) have been adapted for time series prediction with significant success in pattern recognition. However, the common belief is that these models are not suitable for predicting financial market returns, which are known to be almost random. We aim to challenge this misconception through a counterexample. Specifically, we utilized the Chronos model from Ansari et al.(2024) and tested both pretrained configurations and fine-tuned supervised forecasts on the largest American single stocks using data from Guijarro-Ordonnez et al.(2022). We constructed a long/short portfolio, and the performance simulation indicates that LLMs can in reality handle time series that are nearly indistinguishable from noise, demonstrating an ability to identify inefficiencies amidst randomness and generate alpha. Finally, we compared these results with those of specialized models and smaller deep learning models, highlighting significant room for improvement in LLM performance to further enhance their predictive capabilities. ...

December 12, 2024 · 2 min · Research Team

Utilizing RNN for Real-time Cryptocurrency Price Prediction and Trading Strategy Optimization

Utilizing RNN for Real-time Cryptocurrency Price Prediction and Trading Strategy Optimization ArXiv ID: 2411.05829 “View on arXiv” Authors: Unknown Abstract This study explores the use of Recurrent Neural Networks (RNN) for real-time cryptocurrency price prediction and optimized trading strategies. Given the high volatility of the cryptocurrency market, traditional forecasting models often fall short. By leveraging RNNs’ capability to capture long-term patterns in time-series data, this research aims to improve accuracy in price prediction and develop effective trading strategies. The project follows a structured approach involving data collection, preprocessing, and model refinement, followed by rigorous backtesting for profitability and risk assessment. This work contributes to both the academic and practical fields by providing a robust predictive model and optimized trading strategies that address the challenges of cryptocurrency trading. ...

November 5, 2024 · 2 min · Research Team

Neuroevolution Neural Architecture Search for Evolving RNNs in Stock Return Prediction and Portfolio Trading

Neuroevolution Neural Architecture Search for Evolving RNNs in Stock Return Prediction and Portfolio Trading ArXiv ID: 2410.17212 “View on arXiv” Authors: Unknown Abstract Stock return forecasting is a major component of numerous finance applications. Predicted stock returns can be incorporated into portfolio trading algorithms to make informed buy or sell decisions which can optimize returns. In such portfolio trading applications, the predictive performance of a time series forecasting model is crucial. In this work, we propose the use of the Evolutionary eXploration of Augmenting Memory Models (EXAMM) algorithm to progressively evolve recurrent neural networks (RNNs) for stock return predictions. RNNs are evolved independently for each stocks and portfolio trading decisions are made based on the predicted stock returns. The portfolio used for testing consists of the 30 companies in the Dow-Jones Index (DJI) with each stock have the same weight. Results show that using these evolved RNNs and a simple daily long-short strategy can generate higher returns than both the DJI index and the S&P 500 Index for both 2022 (bear market) and 2023 (bull market). ...

October 22, 2024 · 2 min · Research Team

Advancing Financial Forecasting: A Comparative Analysis of Neural Forecasting Models N-HiTS and N-BEATS

Advancing Financial Forecasting: A Comparative Analysis of Neural Forecasting Models N-HiTS and N-BEATS ArXiv ID: 2409.00480 “View on arXiv” Authors: Unknown Abstract In the rapidly evolving field of financial forecasting, the application of neural networks presents a compelling advancement over traditional statistical models. This research paper explores the effectiveness of two specific neural forecasting models, N-HiTS and N-BEATS, in predicting financial market trends. Through a systematic comparison with conventional models, this study demonstrates the superior predictive capabilities of neural approaches, particularly in handling the non-linear dynamics and complex patterns inherent in financial time series data. The results indicate that N-HiTS and N-BEATS not only enhance the accuracy of forecasts but also boost the robustness and adaptability of financial predictions, offering substantial advantages in environments that require real-time decision-making. The paper concludes with insights into the practical implications of neural forecasting in financial markets and recommendations for future research directions. ...

August 31, 2024 · 2 min · Research Team