false

Optimizing Investment Strategies with Lazy Factor and Probability Weighting: A Price Portfolio Forecasting and Mean-Variance Model with Transaction Costs Approach

Optimizing Investment Strategies with Lazy Factor and Probability Weighting: A Price Portfolio Forecasting and Mean-Variance Model with Transaction Costs Approach ArXiv ID: 2306.07928 “View on arXiv” Authors: Unknown Abstract Market traders often engage in the frequent transaction of volatile assets to optimize their total return. In this study, we introduce a novel investment strategy model, anchored on the ’lazy factor.’ Our approach bifurcates into a Price Portfolio Forecasting Model and a Mean-Variance Model with Transaction Costs, utilizing probability weights as the coefficients of laziness factors. The Price Portfolio Forecasting Model, leveraging the EXPMA Mean Method, plots the long-term price trend line and forecasts future price movements, incorporating the tangent slope and rate of change. For short-term investments, we apply the ARIMA Model to predict ensuing prices. The Mean-Variance Model with Transaction Costs employs the Monte Carlo Method to formulate the feasible region. To strike an optimal balance between risk and return, equal probability weights are incorporated as coefficients of the laziness factor. To assess the efficacy of this combined strategy, we executed extensive experiments on a specified dataset. Our findings underscore the model’s adaptability and generalizability, indicating its potential to transform investment strategies. ...

June 12, 2023 · 2 min · Research Team

Backward Hedging for American Options with Transaction Costs

Backward Hedging for American Options with Transaction Costs ArXiv ID: 2305.06805 “View on arXiv” Authors: Unknown Abstract In this article, we introduce an algorithm called Backward Hedging, designed for hedging European and American options while considering transaction costs. The optimal strategy is determined by minimizing an appropriate loss function, which is based on either a risk measure or the mean squared error of the hedging strategy at maturity. The proposed algorithm moves backward in time, determining, for each time-step and different market states, the optimal hedging strategy that minimizes the loss function at the time the option is exercised, by assuming that the strategy used in the future for hedging the liability is the one determined at the previous steps of the algorithm. The approach avoids machine learning and instead relies on classic optimization techniques, Monte Carlo simulations, and interpolations on a grid. Comparisons with the Deep Hedging algorithm in various numerical experiments showcase the efficiency and accuracy of the proposed method. ...

May 10, 2023 · 2 min · Research Team

Mean-variance dynamic portfolio allocation with transaction costs: a Wiener chaos expansion approach

Mean-variance dynamic portfolio allocation with transaction costs: a Wiener chaos expansion approach ArXiv ID: 2305.16152 “View on arXiv” Authors: Unknown Abstract This paper studies the multi-period mean-variance portfolio allocation problem with transaction costs. Many methods have been proposed these last years to challenge the famous uni-period Markowitz strategy.But these methods cannot integrate transaction costs or become computationally heavy and hardly applicable. In this paper, we try to tackle this allocation problem by proposing an innovative approach which relies on representing the set of admissible portfolios by a finite dimensional Wiener chaos expansion. This numerical method is able to find an optimal strategy for the allocation problem subject to transaction costs. To complete the study, the link between optimal portfolios submitted to transaction costs and the underlying risk aversion is investigated. Then a competitive and compliant benchmark based on the sequential uni-period Markowitz strategy is built to highlight the efficiency of our approach. ...

May 3, 2023 · 2 min · Research Team