false

DeepAries: Adaptive Rebalancing Interval Selection for Enhanced Portfolio Selection

DeepAries: Adaptive Rebalancing Interval Selection for Enhanced Portfolio Selection ArXiv ID: 2510.14985 “View on arXiv” Authors: Jinkyu Kim, Hyunjung Yi, Mogan Gim, Donghee Choi, Jaewoo Kang Abstract We propose DeepAries , a novel deep reinforcement learning framework for dynamic portfolio management that jointly optimizes the timing and allocation of rebalancing decisions. Unlike prior reinforcement learning methods that employ fixed rebalancing intervals regardless of market conditions, DeepAries adaptively selects optimal rebalancing intervals along with portfolio weights to reduce unnecessary transaction costs and maximize risk-adjusted returns. Our framework integrates a Transformer-based state encoder, which effectively captures complex long-term market dependencies, with Proximal Policy Optimization (PPO) to generate simultaneous discrete (rebalancing intervals) and continuous (asset allocations) actions. Extensive experiments on multiple real-world financial markets demonstrate that DeepAries significantly outperforms traditional fixed-frequency and full-rebalancing strategies in terms of risk-adjusted returns, transaction costs, and drawdowns. Additionally, we provide a live demo of DeepAries at https://deep-aries.github.io/, along with the source code and dataset at https://github.com/dmis-lab/DeepAries, illustrating DeepAries’ capability to produce interpretable rebalancing and allocation decisions aligned with shifting market regimes. Overall, DeepAries introduces an innovative paradigm for adaptive and practical portfolio management by integrating both timing and allocation into a unified decision-making process. ...

September 11, 2025 · 2 min · Research Team

Cross-Modal Temporal Fusion for Financial Market Forecasting

Cross-Modal Temporal Fusion for Financial Market Forecasting ArXiv ID: 2504.13522 “View on arXiv” Authors: Unknown Abstract Accurate forecasting in financial markets requires integrating diverse data sources, from historical prices to macroeconomic indicators and financial news. However, existing models often fail to align these modalities effectively, limiting their practical use. In this paper, we introduce a transformer-based deep learning framework, Cross-Modal Temporal Fusion (CMTF), that fuses structured and unstructured financial data for improved market prediction. The model incorporates a tensor interpretation module for feature selection and an auto-training pipeline for efficient hyperparameter tuning. Experimental results using FTSE 100 stock data demonstrate that CMTF achieves superior performance in price direction classification compared to classical and deep learning baselines. These findings suggest that our framework is an effective and scalable solution for real-world cross-modal financial forecasting tasks. ...

April 18, 2025 · 2 min · Research Team

Large language models in finance : what is financial sentiment?

Large language models in finance : what is financial sentiment? ArXiv ID: 2503.03612 “View on arXiv” Authors: Unknown Abstract Financial sentiment has become a crucial yet complex concept in finance, increasingly used in market forecasting and investment strategies. Despite its growing importance, there remains a need to define and understand what financial sentiment truly represents and how it can be effectively measured. We explore the nature of financial sentiment and investigate how large language models (LLMs) contribute to its estimation. We trace the evolution of sentiment measurement in finance, from market-based and lexicon-based methods to advanced natural language processing techniques. The emergence of LLMs has significantly enhanced sentiment analysis, providing deeper contextual understanding and greater accuracy in extracting sentiment from financial text. We examine how BERT-based models, such as RoBERTa and FinBERT, are optimized for structured sentiment classification, while GPT-based models, including GPT-4, OPT, and LLaMA, excel in financial text generation and real-time sentiment interpretation. A comparative analysis of bidirectional and autoregressive transformer architectures highlights their respective roles in investor sentiment analysis, algorithmic trading, and financial decision-making. By exploring what financial sentiment is and how it is estimated within LLMs, we provide insights into the growing role of AI-driven sentiment analysis in finance. ...

March 5, 2025 · 2 min · Research Team

TLOB: A Novel Transformer Model with Dual Attention for Price Trend Prediction with Limit Order Book Data

TLOB: A Novel Transformer Model with Dual Attention for Price Trend Prediction with Limit Order Book Data ArXiv ID: 2502.15757 “View on arXiv” Authors: Unknown Abstract Price Trend Prediction (PTP) based on Limit Order Book (LOB) data is a fundamental challenge in financial markets. Despite advances in deep learning, existing models fail to generalize across different market conditions and assets. Surprisingly, by adapting a simple MLP-based architecture to LOB, we show that we surpass SoTA performance; thus, challenging the necessity of complex architectures. Unlike past work that shows robustness issues, we propose TLOB, a transformer-based model that uses a dual attention mechanism to capture spatial and temporal dependencies in LOB data. This allows it to adaptively focus on the market microstructure, making it particularly effective for longer-horizon predictions and volatile market conditions. We also introduce a new labeling method that improves on previous ones, removing the horizon bias. We evaluate TLOB’s effectiveness across four horizons, using the established FI-2010 benchmark, a NASDAQ and a Bitcoin dataset. TLOB outperforms SoTA methods in every dataset and horizon. Additionally, we empirically show how stock price predictability has declined over time, -6.68 in F1-score, highlighting the growing market efficiency. Predictability must be considered in relation to transaction costs, so we experimented with defining trends using an average spread, reflecting the primary transaction cost. The resulting performance deterioration underscores the complexity of translating trend classification into profitable trading strategies. We argue that our work provides new insights into the evolving landscape of stock price trend prediction and sets a strong foundation for future advancements in financial AI. We release the code at https://github.com/LeonardoBerti00/TLOB. ...

February 12, 2025 · 2 min · Research Team

Transformer Based Time-Series Forecasting for Stock

Transformer Based Time-Series Forecasting for Stock ArXiv ID: 2502.09625 “View on arXiv” Authors: Unknown Abstract To the naked eye, stock prices are considered chaotic, dynamic, and unpredictable. Indeed, it is one of the most difficult forecasting tasks that hundreds of millions of retail traders and professional traders around the world try to do every second even before the market opens. With recent advances in the development of machine learning and the amount of data the market generated over years, applying machine learning techniques such as deep learning neural networks is unavoidable. In this work, we modeled the task as a multivariate forecasting problem, instead of a naive autoregression problem. The multivariate analysis is done using the attention mechanism via applying a mutated version of the Transformer, “Stockformer”, which we created. ...

January 29, 2025 · 2 min · Research Team

IVE: Enhanced Probabilistic Forecasting of Intraday Volume Ratio with Transformers

IVE: Enhanced Probabilistic Forecasting of Intraday Volume Ratio with Transformers ArXiv ID: 2411.10956 “View on arXiv” Authors: Unknown Abstract This paper presents a new approach to volume ratio prediction in financial markets, specifically targeting the execution of Volume-Weighted Average Price (VWAP) strategies. Recognizing the importance of accurate volume profile forecasting, our research leverages the Transformer architecture to predict intraday volume ratio at a one-minute scale. We diverge from prior models that use log-transformed volume or turnover rates, instead opting for a prediction model that accounts for the intraday volume ratio’s high variability, stabilized via log-normal transformation. Our input data incorporates not only the statistical properties of volume but also external volume-related features, absolute time information, and stock-specific characteristics to enhance prediction accuracy. The model structure includes an encoder-decoder Transformer architecture with a distribution head for greedy sampling, optimizing performance on high-liquidity stocks across both Korean and American markets. We extend the capabilities of our model beyond point prediction by introducing probabilistic forecasting that captures the mean and standard deviation of volume ratios, enabling the anticipation of significant intraday volume spikes. Furthermore, an agent with a simple trading logic demonstrates the practical application of our model through live trading tests in the Korean market, outperforming VWAP benchmarks over a period of two and a half months. Our findings underscore the potential of Transformer-based probabilistic models for volume ratio prediction and pave the way for future research advancements in this domain. ...

November 17, 2024 · 2 min · Research Team

DiffsFormer: A Diffusion Transformer on Stock Factor Augmentation

DiffsFormer: A Diffusion Transformer on Stock Factor Augmentation ArXiv ID: 2402.06656 “View on arXiv” Authors: Unknown Abstract Machine learning models have demonstrated remarkable efficacy and efficiency in a wide range of stock forecasting tasks. However, the inherent challenges of data scarcity, including low signal-to-noise ratio (SNR) and data homogeneity, pose significant obstacles to accurate forecasting. To address this issue, we propose a novel approach that utilizes artificial intelligence-generated samples (AIGS) to enhance the training procedures. In our work, we introduce the Diffusion Model to generate stock factors with Transformer architecture (DiffsFormer). DiffsFormer is initially trained on a large-scale source domain, incorporating conditional guidance so as to capture global joint distribution. When presented with a specific downstream task, we employ DiffsFormer to augment the training procedure by editing existing samples. This editing step allows us to control the strength of the editing process, determining the extent to which the generated data deviates from the target domain. To evaluate the effectiveness of DiffsFormer augmented training, we conduct experiments on the CSI300 and CSI800 datasets, employing eight commonly used machine learning models. The proposed method achieves relative improvements of 7.2% and 27.8% in annualized return ratio for the respective datasets. Furthermore, we perform extensive experiments to gain insights into the functionality of DiffsFormer and its constituent components, elucidating how they address the challenges of data scarcity and enhance the overall model performance. Our research demonstrates the efficacy of leveraging AIGS and the DiffsFormer architecture to mitigate data scarcity in stock forecasting tasks. ...

February 5, 2024 · 2 min · Research Team