false

Identifying and Quantifying Financial Bubbles with the Hyped Log-Periodic Power Law Model

Identifying and Quantifying Financial Bubbles with the Hyped Log-Periodic Power Law Model ArXiv ID: 2510.10878 “View on arXiv” Authors: Zheng Cao, Xingran Shao, Yuheng Yan, Helyette Geman Abstract We propose a novel model, the Hyped Log-Periodic Power Law Model (HLPPL), to the problem of quantifying and detecting financial bubbles, an ever-fascinating one for academics and practitioners alike. Bubble labels are generated using a Log-Periodic Power Law (LPPL) model, sentiment scores, and a hype index we introduced in previous research on NLP forecasting of stock return volatility. Using these tools, a dual-stream transformer model is trained with market data and machine learning methods, resulting in a time series of confidence scores as a Bubble Score. A distinctive feature of our framework is that it captures phases of extreme overpricing and underpricing within a unified structure. We achieve an average yield of 34.13 percentage annualized return when backtesting U.S. equities during the period 2018 to 2024, while the approach exhibits a remarkable generalization ability across industry sectors. Its conservative bias in predicting bubble periods minimizes false positives, a feature which is especially beneficial for market signaling and decision-making. Overall, this approach utilizes both theoretical and empirical advances for real-time positive and negative bubble identification and measurement with HLPPL signals. ...

October 13, 2025 · 2 min · Research Team

Asset Pricing in Pre-trained Transformer

Asset Pricing in Pre-trained Transformer ArXiv ID: 2505.01575 “View on arXiv” Authors: Shanyan Lai Abstract This paper proposes an innovative Transformer model, Single-directional representative from Transformer (SERT), for US large capital stock pricing. It also innovatively applies the pre-trained Transformer models under the stock pricing and factor investment context. They are compared with standard Transformer models and encoder-only Transformer models in three periods covering the entire COVID-19 pandemic to examine the model adaptivity and suitability during the extreme market fluctuations. Namely, pre-COVID-19 period (mild up-trend), COVID-19 period (sharp up-trend with deep down shock) and 1-year post-COVID-19 (high fluctuation sideways movement). The best proposed SERT model achieves the highest out-of-sample R2, 11.2% and 10.91% respectively, when extreme market fluctuation takes place followed by pre-trained Transformer models (10.38% and 9.15%). Their Trend-following-based strategy wise performance also proves their excellent capability for hedging downside risks during market shocks. The proposed SERT model achieves a Sortino ratio 47% higher than the buy-and-hold benchmark in the equal-weighted portfolio and 28% higher in the value-weighted portfolio when the pandemic period is attended. It proves that Transformer models have a great capability to capture patterns of temporal sparsity data in the asset pricing factor model, especially with considerable volatilities. We also find the softmax signal filter as the common configuration of Transformer models in alternative contexts, which only eliminates differences between models, but does not improve strategy-wise performance, while increasing attention heads improve the model performance insignificantly and applying the ’layer norm first’ method do not boost the model performance in our case. ...

May 2, 2025 · 2 min · Research Team

Enhanced Momentum with Momentum Transformers

Enhanced Momentum with Momentum Transformers ArXiv ID: 2412.12516 “View on arXiv” Authors: Unknown Abstract The primary objective of this research is to build a Momentum Transformer that is expected to outperform benchmark time-series momentum and mean-reversion trading strategies. We extend the ideas introduced in the paper Trading with the Momentum Transformer: An Intelligent and Interpretable Architecture to equities as the original paper primarily only builds upon futures and equity indices. Unlike conventional Long Short-Term Memory (LSTM) models, which operate sequentially and are optimized for processing local patterns, an attention mechanism equips our architecture with direct access to all prior time steps in the training window. This hybrid design, combining attention with an LSTM, enables the model to capture long-term dependencies, enhance performance in scenarios accounting for transaction costs, and seamlessly adapt to evolving market conditions, such as those witnessed during the Covid Pandemic. We average 4.14% returns which is similar to the original papers results. Our Sharpe is lower at an average of 1.12 due to much higher volatility which may be due to stocks being inherently more volatile than futures and indices. ...

December 17, 2024 · 2 min · Research Team

Deep Learning-Based Electricity Price Forecast for Virtual Bidding in Wholesale Electricity Market

Deep Learning-Based Electricity Price Forecast for Virtual Bidding in Wholesale Electricity Market ArXiv ID: 2412.00062 “View on arXiv” Authors: Unknown Abstract Virtual bidding plays an important role in two-settlement electric power markets, as it can reduce discrepancies between day-ahead and real-time markets. Renewable energy penetration increases volatility in electricity prices, making accurate forecasting critical for virtual bidders, reducing uncertainty and maximizing profits. This study presents a Transformer-based deep learning model to forecast the price spread between real-time and day-ahead electricity prices in the ERCOT (Electric Reliability Council of Texas) market. The proposed model leverages various time-series features, including load forecasts, solar and wind generation forecasts, and temporal attributes. The model is trained under realistic constraints and validated using a walk-forward approach by updating the model every week. Based on the price spread prediction results, several trading strategies are proposed and the most effective strategy for maximizing cumulative profit under realistic market conditions is identified through backtesting. The results show that the strategy of trading only at the peak hour with a precision score of over 50% produces nearly consistent profit over the test period. The proposed method underscores the importance of an accurate electricity price forecasting model and introduces a new method of evaluating the price forecast model from a virtual bidder’s perspective, providing valuable insights for future research. ...

November 25, 2024 · 2 min · Research Team

An Adaptive Dual-level Reinforcement Learning Approach for Optimal Trade Execution

An Adaptive Dual-level Reinforcement Learning Approach for Optimal Trade Execution ArXiv ID: 2307.10649 “View on arXiv” Authors: Unknown Abstract The purpose of this research is to devise a tactic that can closely track the daily cumulative volume-weighted average price (VWAP) using reinforcement learning. Previous studies often choose a relatively short trading horizon to implement their models, making it difficult to accurately track the daily cumulative VWAP since the variations of financial data are often insignificant within the short trading horizon. In this paper, we aim to develop a strategy that can accurately track the daily cumulative VWAP while minimizing the deviation from the VWAP. We propose a method that leverages the U-shaped pattern of intraday stock trade volumes and use Proximal Policy Optimization (PPO) as the learning algorithm. Our method follows a dual-level approach: a Transformer model that captures the overall(global) distribution of daily volumes in a U-shape, and a LSTM model that handles the distribution of orders within smaller(local) time intervals. The results from our experiments suggest that this dual-level architecture improves the accuracy of approximating the cumulative VWAP, when compared to previous reinforcement learning-based models. ...

July 20, 2023 · 2 min · Research Team