false

Enhancing Portfolio Optimization with Deep Learning Insights

Enhancing Portfolio Optimization with Deep Learning Insights ArXiv ID: 2601.07942 “View on arXiv” Authors: Brandon Luo, Jim Skufca Abstract Our work focuses on deep learning (DL) portfolio optimization, tackling challenges in long-only, multi-asset strategies across market cycles. We propose training models with limited regime data using pre-training techniques and leveraging transformer architectures for state variable inclusion. Evaluating our approach against traditional methods shows promising results, demonstrating our models’ resilience in volatile markets. These findings emphasize the evolving landscape of DL-driven portfolio optimization, stressing the need for adaptive strategies to navigate dynamic market conditions and improve predictive accuracy. ...

January 12, 2026 · 2 min · Research Team

News-Aware Direct Reinforcement Trading for Financial Markets

News-Aware Direct Reinforcement Trading for Financial Markets ArXiv ID: 2510.19173 “View on arXiv” Authors: Qing-Yu Lan, Zhan-He Wang, Jun-Qian Jiang, Yu-Tong Wang, Yun-Song Piao Abstract The financial market is known to be highly sensitive to news. Therefore, effectively incorporating news data into quantitative trading remains an important challenge. Existing approaches typically rely on manually designed rules and/or handcrafted features. In this work, we directly use the news sentiment scores derived from large language models, together with raw price and volume data, as observable inputs for reinforcement learning. These inputs are processed by sequence models such as recurrent neural networks or Transformers to make end-to-end trading decisions. We conduct experiments using the cryptocurrency market as an example and evaluate two representative reinforcement learning algorithms, namely Double Deep Q-Network (DDQN) and Group Relative Policy Optimization (GRPO). The results demonstrate that our news-aware approach, which does not depend on handcrafted features or manually designed rules, can achieve performance superior to market benchmarks. We further highlight the critical role of time-series information in this process. ...

October 22, 2025 · 2 min · Research Team

FinZero: Launching Multi-modal Financial Time Series Forecast with Large Reasoning Model

FinZero: Launching Multi-modal Financial Time Series Forecast with Large Reasoning Model ArXiv ID: 2509.08742 “View on arXiv” Authors: Yanlong Wang, Jian Xu, Fei Ma, Hongkang Zhang, Hang Yu, Tiantian Gao, Yu Wang, Haochen You, Shao-Lun Huang, Danny Dongning Sun, Xiao-Ping Zhang Abstract Financial time series forecasting is both highly significant and challenging. Previous approaches typically standardized time series data before feeding it into forecasting models, but this encoding process inherently leads to a loss of important information. Moreover, past time series models generally require fixed numbers of variables or lookback window lengths, which further limits the scalability of time series forecasting. Besides, the interpretability and the uncertainty in forecasting remain areas requiring further research, as these factors directly impact the reliability and practical value of predictions. To address these issues, we first construct a diverse financial image-text dataset (FVLDB) and develop the Uncertainty-adjusted Group Relative Policy Optimization (UARPO) method to enable the model not only output predictions but also analyze the uncertainty of those predictions. We then proposed FinZero, a multimodal pre-trained model finetuned by UARPO to perform reasoning, prediction, and analytical understanding on the FVLDB financial time series. Extensive experiments validate that FinZero exhibits strong adaptability and scalability. After fine-tuning with UARPO, FinZero achieves an approximate 13.48% improvement in prediction accuracy over GPT-4o in the high-confidence group, demonstrating the effectiveness of reinforcement learning fine-tuning in multimodal large model, including in financial time series forecasting tasks. ...

September 10, 2025 · 2 min · Research Team

Year-over-Year Developments in Financial Fraud Detection via Deep Learning: A Systematic Literature Review

Year-over-Year Developments in Financial Fraud Detection via Deep Learning: A Systematic Literature Review ArXiv ID: 2502.00201 “View on arXiv” Authors: Unknown Abstract This paper systematically reviews advancements in deep learning (DL) techniques for financial fraud detection, a critical issue in the financial sector. Using the Kitchenham systematic literature review approach, 57 studies published between 2019 and 2024 were analyzed. The review highlights the effectiveness of various deep learning models such as Convolutional Neural Networks, Long Short-Term Memory, and transformers across domains such as credit card transactions, insurance claims, and financial statement audits. Performance metrics such as precision, recall, F1-score, and AUC-ROC were evaluated. Key themes explored include the impact of data privacy frameworks and advancements in feature engineering and data preprocessing. The study emphasizes challenges such as imbalanced datasets, model interpretability, and ethical considerations, alongside opportunities for automation and privacy-preserving techniques such as blockchain integration and Principal Component Analysis. By examining trends over the past five years, this review identifies critical gaps and promising directions for advancing DL applications in financial fraud detection, offering actionable insights for researchers and practitioners. ...

January 31, 2025 · 2 min · Research Team

A Deep Learning Approach for Trading Factor Residuals

A Deep Learning Approach for Trading Factor Residuals ArXiv ID: 2412.11432 “View on arXiv” Authors: Unknown Abstract The residuals in factor models prevalent in asset pricing presents opportunities to exploit the mis-pricing from unexplained cross-sectional variation for arbitrage. We performed a replication of the methodology of Guijarro-Ordonez et al. (2019) (G-P-Z) on Deep Learning Statistical Arbitrage (DLSA), originally applied to U.S. equity data from 1998 to 2016, using a more recent out-of-sample period from 2016 to 2024. Adhering strictly to point-in-time (PIT) principles and ensuring no information leakage, we follow the same data pre-processing, factor modeling, and deep learning architectures (CNNs and Transformers) as outlined by G-P-Z. Our replication yields unusually strong performance metrics in certain tests, with out-of-sample Sharpe ratios occasionally exceeding 10. While such results are intriguing, they may indicate model overfitting, highly specific market conditions, or insufficient accounting for transaction costs and market impact. Further examination and robustness checks are needed to align these findings with the more modest improvements reported in the original study. (This work was conducted as the final project for IEOR 4576: Data-Driven Methods in Finance at Columbia University.) ...

December 16, 2024 · 2 min · Research Team

Joint Combinatorial Node Selection and Resource Allocations in the Lightning Network using Attention-based Reinforcement Learning

Joint Combinatorial Node Selection and Resource Allocations in the Lightning Network using Attention-based Reinforcement Learning ArXiv ID: 2411.17353 “View on arXiv” Authors: Unknown Abstract The Lightning Network (LN) has emerged as a second-layer solution to Bitcoin’s scalability challenges. The rise of Payment Channel Networks (PCNs) and their specific mechanisms incentivize individuals to join the network for profit-making opportunities. According to the latest statistics, the total value locked within the Lightning Network is approximately $500 million. Meanwhile, joining the LN with the profit-making incentives presents several obstacles, as it involves solving a complex combinatorial problem that encompasses both discrete and continuous control variables related to node selection and resource allocation, respectively. Current research inadequately captures the critical role of resource allocation and lacks realistic simulations of the LN routing mechanism. In this paper, we propose a Deep Reinforcement Learning (DRL) framework, enhanced by the power of transformers, to address the Joint Combinatorial Node Selection and Resource Allocation (JCNSRA) problem. We have improved upon an existing environment by introducing modules that enhance its routing mechanism, thereby narrowing the gap with the actual LN routing system and ensuring compatibility with the JCNSRA problem. We compare our model against several baselines and heuristics, demonstrating its superior performance across various settings. Additionally, we address concerns regarding centralization in the LN by deploying our agent within the network and monitoring the centrality measures of the evolved graph. Our findings suggest not only an absence of conflict between LN’s decentralization goals and individuals’ revenue-maximization incentives but also a positive association between the two. ...

November 26, 2024 · 2 min · Research Team

Deep Learning in Long-Short Stock Portfolio Allocation: An Empirical Study

Deep Learning in Long-Short Stock Portfolio Allocation: An Empirical Study ArXiv ID: 2411.13555 “View on arXiv” Authors: Unknown Abstract This paper provides an empirical study explores the application of deep learning algorithms-Multilayer Perceptron (MLP), Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Transformer-in constructing long-short stock portfolios. Two datasets comprising randomly selected stocks from the S&P500 and NASDAQ indices, each spanning a decade of daily data, are utilized. The models predict daily stock returns based on historical features such as past returns,Relative Strength Index (RSI), trading volume, and volatility. Portfolios are dynamically adjusted by longing stocks with positive predicted returns and shorting those with negative predictions, with equal asset weights. Performance is evaluated over a two-year testing period, focusing on return, Sharpe ratio, and maximum drawdown metrics. The results demonstrate the efficacy of deep learning models in enhancing long-short stock portfolio performance. ...

October 31, 2024 · 2 min · Research Team

BERT vs GPT for financial engineering

BERT vs GPT for financial engineering ArXiv ID: 2405.12990 “View on arXiv” Authors: Unknown Abstract The paper benchmarks several Transformer models [“4”], to show how these models can judge sentiment from a news event. This signal can then be used for downstream modelling and signal identification for commodity trading. We find that fine-tuned BERT models outperform fine-tuned or vanilla GPT models on this task. Transformer models have revolutionized the field of natural language processing (NLP) in recent years, achieving state-of-the-art results on various tasks such as machine translation, text summarization, question answering, and natural language generation. Among the most prominent transformer models are Bidirectional Encoder Representations from Transformers (BERT) and Generative Pre-trained Transformer (GPT), which differ in their architectures and objectives. A CopBERT model training data and process overview is provided. The CopBERT model outperforms similar domain specific BERT trained models such as FinBERT. The below confusion matrices show the performance on CopBERT & CopGPT respectively. We see a ~10 percent increase in f1_score when compare CopBERT vs GPT4 and 16 percent increase vs CopGPT. Whilst GPT4 is dominant It highlights the importance of considering alternatives to GPT models for financial engineering tasks, given risks of hallucinations, and challenges with interpretability. We unsurprisingly see the larger LLMs outperform the BERT models, with predictive power. In summary BERT is partially the new XGboost, what it lacks in predictive power it provides with higher levels of interpretability. Concluding that BERT models might not be the next XGboost [“2”], but represent an interesting alternative for financial engineering tasks, that require a blend of interpretability and accuracy. ...

April 24, 2024 · 2 min · Research Team

FNSPID: A Comprehensive Financial News Dataset in Time Series

FNSPID: A Comprehensive Financial News Dataset in Time Series ArXiv ID: 2402.06698 “View on arXiv” Authors: Unknown Abstract Financial market predictions utilize historical data to anticipate future stock prices and market trends. Traditionally, these predictions have focused on the statistical analysis of quantitative factors, such as stock prices, trading volumes, inflation rates, and changes in industrial production. Recent advancements in large language models motivate the integrated financial analysis of both sentiment data, particularly market news, and numerical factors. Nonetheless, this methodology frequently encounters constraints due to the paucity of extensive datasets that amalgamate both quantitative and qualitative sentiment analyses. To address this challenge, we introduce a large-scale financial dataset, namely, Financial News and Stock Price Integration Dataset (FNSPID). It comprises 29.7 million stock prices and 15.7 million time-aligned financial news records for 4,775 S&P500 companies, covering the period from 1999 to 2023, sourced from 4 stock market news websites. We demonstrate that FNSPID excels existing stock market datasets in scale and diversity while uniquely incorporating sentiment information. Through financial analysis experiments on FNSPID, we propose: (1) the dataset’s size and quality significantly boost market prediction accuracy; (2) adding sentiment scores modestly enhances performance on the transformer-based model; (3) a reproducible procedure that can update the dataset. Completed work, code, documentation, and examples are available at github.com/Zdong104/FNSPID. FNSPID offers unprecedented opportunities for the financial research community to advance predictive modeling and analysis. ...

February 9, 2024 · 2 min · Research Team

MDGNN: Multi-Relational Dynamic Graph Neural Network for Comprehensive and Dynamic Stock Investment Prediction

MDGNN: Multi-Relational Dynamic Graph Neural Network for Comprehensive and Dynamic Stock Investment Prediction ArXiv ID: 2402.06633 “View on arXiv” Authors: Unknown Abstract The stock market is a crucial component of the financial system, but predicting the movement of stock prices is challenging due to the dynamic and intricate relations arising from various aspects such as economic indicators, financial reports, global news, and investor sentiment. Traditional sequential methods and graph-based models have been applied in stock movement prediction, but they have limitations in capturing the multifaceted and temporal influences in stock price movements. To address these challenges, the Multi-relational Dynamic Graph Neural Network (MDGNN) framework is proposed, which utilizes a discrete dynamic graph to comprehensively capture multifaceted relations among stocks and their evolution over time. The representation generated from the graph offers a complete perspective on the interrelationships among stocks and associated entities. Additionally, the power of the Transformer structure is leveraged to encode the temporal evolution of multiplex relations, providing a dynamic and effective approach to predicting stock investment. Further, our proposed MDGNN framework achieves the best performance in public datasets compared with state-of-the-art (SOTA) stock investment methods. ...

January 19, 2024 · 2 min · Research Team