false

Breaking the Trend: How to Avoid Cherry-Picked Signals

Breaking the Trend: How to Avoid Cherry-Picked Signals ArXiv ID: 2504.10914 “View on arXiv” Authors: Unknown Abstract Our empirical results show an impressive fit with the pretty complex theoretical Sharpe formula of a trend-following strategy depending on the parameter of the signal, which was derived by by Grebenkov and Serror (2014). That empirical fit convinces us that a mean-reversion process with only one time scale is enough to model, in a pretty precise way, the reality of the trend-following mechanism at the average scale of CTAs and as a consequence, using only one simple EMA, appears optimal to capture the trend. As a consequence, using a complex basket of different complex indicators as signal, do not seem to be so rational or optimal and exposes to the risk of cherry-picking. ...

April 15, 2025 · 2 min · Research Team

Follow the Leader: Enhancing Systematic Trend-Following Using Network Momentum

Follow the Leader: Enhancing Systematic Trend-Following Using Network Momentum ArXiv ID: 2501.07135 “View on arXiv” Authors: Unknown Abstract We present a systematic, trend-following strategy, applied to commodity futures markets, that combines univariate trend indicators with cross-sectional trend indicators that capture so-called {"\em momentum spillover"}, which can occur when there is a lead-lag relationship between the trending behaviour of different markets. Our strategy utilises two methods for detecting lead-lag relationships, with a method for computing {"\em network momentum"}, to produce a novel trend-following indicator. We use our new trend indicator to construct a portfolio whose performance we compare to a baseline model which uses only univariate indicators, and demonstrate statistically significant improvements in Sharpe ratio, skewness of returns, and downside performance, using synthetic bootstrapped data samples taken from time-series of actual prices. ...

January 13, 2025 · 2 min · Research Team