false

On a multivariate extension for Copula-based Conditional Value at Risk

On a multivariate extension for Copula-based Conditional Value at Risk ArXiv ID: 2508.16132 “View on arXiv” Authors: Andres Mauricio Molina Barreto Abstract Copula-based Conditional Value at Risk (CCVaR) is defined as an alternative version of the classical Conditional Value at Risk (CVaR) for multivariate random vectors intended to be real-valued. We aim to generalize CCVaR to several dimensions (d>=2) when the dependence structure is given by an Archimedean copula. While previous research focused on the bivariate case, leaving the multivariate version unexplored, an almost closed-form expression for CCVaR under an Archimedean copula is derived. The conditions under which this risk measure satisfies coherence are then examined. Finally, numerical experiments based on real data are conducted to estimate CCVaR, and the results are compared with classical measures of Value at Risk (VaR) and Conditional Value at Risk (CVaR). ...

August 22, 2025 · 2 min · Research Team

Comparative Evaluation of VaR Models: Historical Simulation, GARCH-Based Monte Carlo, and Filtered Historical Simulation

Comparative Evaluation of VaR Models: Historical Simulation, GARCH-Based Monte Carlo, and Filtered Historical Simulation ArXiv ID: 2505.05646 “View on arXiv” Authors: Xin Tian Abstract This report presents a comprehensive evaluation of three Value-at-Risk (VaR) modeling approaches: Historical Simulation (HS), GARCH with Normal approximation (GARCH-N), and GARCH with Filtered Historical Simulation (FHS), using both in-sample and multi-day forecasting frameworks. We compute daily 5 percent VaR estimates using each method and assess their accuracy via empirical breach frequencies and visual breach indicators. Our findings reveal severe miscalibration in the HS and GARCH-N models, with empirical breach rates far exceeding theoretical levels. In contrast, the FHS method consistently aligns with theoretical expectations and exhibits desirable statistical and visual behavior. We further simulate 5-day cumulative returns under both GARCH-N and GARCH-FHS frameworks to compute multi-period VaR and Expected Shortfall. Results show that GARCH-N underestimates tail risk due to its reliance on the Gaussian assumption, whereas GARCH-FHS provides more robust and conservative tail estimates. Overall, the study demonstrates that the GARCH-FHS model offers superior performance in capturing fat-tailed risks and provides more reliable short-term risk forecasts. ...

May 8, 2025 · 2 min · Research Team

Some properties of Euler capital allocation

Some properties of Euler capital allocation ArXiv ID: 2405.00606 “View on arXiv” Authors: Unknown Abstract The paper discusses capital allocation using the Euler formula and focuses on the risk measures Value-at-Risk (VaR) and Expected shortfall (ES). Some new results connected to this capital allocation is known. Two examples illustrate that capital allocation with VaR is not monotonous which may be surprising since VaR is monotonous. A third example illustrates why the same risk measure should be used in capital allocation as in the evaluation of the total portfolio. We show how simulation may be used in order to estimate the expected Return on risk adjusted capital in the commitment period of an asset. Finally, we show how Markov chain Monte Carlo may be used in the estimation of the capital allocation. ...

May 1, 2024 · 2 min · Research Team

Quantum Risk Analysis of Financial Derivatives

Quantum Risk Analysis of Financial Derivatives ArXiv ID: 2404.10088 “View on arXiv” Authors: Unknown Abstract We introduce two quantum algorithms to compute the Value at Risk (VaR) and Conditional Value at Risk (CVaR) of financial derivatives using quantum computers: the first by applying existing ideas from quantum risk analysis to derivative pricing, and the second based on a novel approach using Quantum Signal Processing (QSP). Previous work in the literature has shown that quantum advantage is possible in the context of individual derivative pricing and that advantage can be leveraged in a straightforward manner in the estimation of the VaR and CVaR. The algorithms we introduce in this work aim to provide an additional advantage by encoding the derivative price over multiple market scenarios in superposition and computing the desired values by applying appropriate transformations to the quantum system. We perform complexity and error analysis of both algorithms, and show that while the two algorithms have the same asymptotic scaling the QSP-based approach requires significantly fewer quantum resources for the same target accuracy. Additionally, by numerically simulating both quantum and classical VaR algorithms, we demonstrate that the quantum algorithm can extract additional advantage from a quantum computer compared to individual derivative pricing. Specifically, we show that under certain conditions VaR estimation can lower the latest published estimates of the logical clock rate required for quantum advantage in derivative pricing by up to $\sim 30$x. In light of these results, we are encouraged that our formulation of derivative pricing in the QSP framework may be further leveraged for quantum advantage in other relevant financial applications, and that quantum computers could be harnessed more efficiently by considering problems in the financial sector at a higher level. ...

April 15, 2024 · 3 min · Research Team

Asymptotic Error Analysis of Multilevel Stochastic Approximations for the Value-at-Risk and Expected Shortfall

Asymptotic Error Analysis of Multilevel Stochastic Approximations for the Value-at-Risk and Expected Shortfall ArXiv ID: 2311.15333 “View on arXiv” Authors: Unknown Abstract Crépey, Frikha, and Louzi (2023) introduced a nested stochastic approximation algorithm and its multilevel acceleration to compute the value-at-risk and expected shortfall of a random financial loss. We hereby establish central limit theorems for the renormalized estimation errors associated with both algorithms as well as their averaged versions. Our findings are substantiated through a numerical example. ...

November 26, 2023 · 1 min · Research Team