false

Machine Learning Based Stress Testing Framework for Indian Financial Market Portfolios

Machine Learning Based Stress Testing Framework for Indian Financial Market Portfolios ArXiv ID: 2507.02011 “View on arXiv” Authors: Vidya Sagar G, Shifat Ali, Siddhartha P. Chakrabarty Abstract This paper presents a machine learning driven framework for sectoral stress testing in the Indian financial market, focusing on financial services, information technology, energy, consumer goods, and pharmaceuticals. Initially, we address the limitations observed in conventional stress testing through dimensionality reduction and latent factor modeling via Principal Component Analysis and Autoencoders. Building on this, we extend the methodology using Variational Autoencoders, which introduces a probabilistic structure to the latent space. This enables Monte Carlo-based scenario generation, allowing for more nuanced, distribution-aware simulation of stressed market conditions. The proposed framework captures complex non-linear dependencies and supports risk estimation through Value-at-Risk and Expected Shortfall. Together, these pipelines demonstrate the potential of Machine Learning approaches to improve the flexibility, robustness, and realism of financial stress testing. ...

July 2, 2025 · 2 min · Research Team

Generating drawdown-realistic financial price paths using path signatures

Generating drawdown-realistic financial price paths using path signatures ArXiv ID: 2309.04507 “View on arXiv” Authors: Unknown Abstract A novel generative machine learning approach for the simulation of sequences of financial price data with drawdowns quantifiably close to empirical data is introduced. Applications such as pricing drawdown insurance options or developing portfolio drawdown control strategies call for a host of drawdown-realistic paths. Historical scenarios may be insufficient to effectively train and backtest the strategy, while standard parametric Monte Carlo does not adequately preserve drawdowns. We advocate a non-parametric Monte Carlo approach combining a variational autoencoder generative model with a drawdown reconstruction loss function. To overcome issues of numerical complexity and non-differentiability, we approximate drawdown as a linear function of the moments of the path, known in the literature as path signatures. We prove the required regularity of drawdown function and consistency of the approximation. Furthermore, we obtain close numerical approximations using linear regression for fractional Brownian and empirical data. We argue that linear combinations of the moments of a path yield a mathematically non-trivial smoothing of the drawdown function, which gives one leeway to simulate drawdown-realistic price paths by including drawdown evaluation metrics in the learning objective. We conclude with numerical experiments on mixed equity, bond, real estate and commodity portfolios and obtain a host of drawdown-realistic paths. ...

September 8, 2023 · 2 min · Research Team

Diffusion Variational Autoencoder for Tackling Stochasticity in Multi-Step Regression Stock Price Prediction

Diffusion Variational Autoencoder for Tackling Stochasticity in Multi-Step Regression Stock Price Prediction ArXiv ID: 2309.00073 “View on arXiv” Authors: Unknown Abstract Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility, allowing financial institutions to price and hedge derivatives, and banks to quantify the risk in their trading books. Additionally, most financial regulators also require a liquidity horizon of several days for institutional investors to exit their risky assets, in order to not materially affect market prices. However, the task of multi-step stock price prediction is challenging, given the highly stochastic nature of stock data. Current solutions to tackle this problem are mostly designed for single-step, classification-based predictions, and are limited to low representation expressiveness. The problem also gets progressively harder with the introduction of the target price sequence, which also contains stochastic noise and reduces generalizability at test-time. To tackle these issues, we combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction through a stochastic generative process. The hierarchical VAE allows us to learn the complex and low-level latent variables for stock prediction, while the diffusion probabilistic model trains the predictor to handle stock price stochasticity by progressively adding random noise to the stock data. Our Diffusion-VAE (D-Va) model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance. More importantly, the multi-step outputs can also allow us to form a stock portfolio over the prediction length. We demonstrate the effectiveness of our model outputs in the portfolio investment task through the Sharpe ratio metric and highlight the importance of dealing with different types of prediction uncertainties. ...

August 18, 2023 · 2 min · Research Team