false

Towards Causal Market Simulators

Towards Causal Market Simulators ArXiv ID: 2511.04469 “View on arXiv” Authors: Dennis Thumm, Luis Ontaneda Mijares Abstract Market generators using deep generative models have shown promise for synthetic financial data generation, but existing approaches lack causal reasoning capabilities essential for counterfactual analysis and risk assessment. We propose a Time-series Neural Causal Model VAE (TNCM-VAE) that combines variational autoencoders with structural causal models to generate counterfactual financial time series while preserving both temporal dependencies and causal relationships. Our approach enforces causal constraints through directed acyclic graphs in the decoder architecture and employs the causal Wasserstein distance for training. We validate our method on synthetic autoregressive models inspired by the Ornstein-Uhlenbeck process, demonstrating superior performance in counterfactual probability estimation with L1 distances as low as 0.03-0.10 compared to ground truth. The model enables financial stress testing, scenario analysis, and enhanced backtesting by generating plausible counterfactual market trajectories that respect underlying causal mechanisms. ...

November 6, 2025 · 2 min · Research Team

Deep Learning Option Pricing with Market Implied Volatility Surfaces

Deep Learning Option Pricing with Market Implied Volatility Surfaces ArXiv ID: 2509.05911 “View on arXiv” Authors: Lijie Ding, Egang Lu, Kin Cheung Abstract We present a deep learning framework for pricing options based on market-implied volatility surfaces. Using end-of-day S&P 500 index options quotes from 2018-2023, we construct arbitrage-free volatility surfaces and generate training data for American puts and arithmetic Asian options using QuantLib. To address the high dimensionality of volatility surfaces, we employ a variational autoencoder (VAE) that compresses volatility surfaces across maturities and strikes into a 10-dimensional latent representation. We feed these latent variables, combined with option-specific inputs such as strike and maturity, into a multilayer perceptron to predict option prices. Our model is trained in stages: first to train the VAE for volatility surface compression and reconstruction, then options pricing mapping, and finally fine-tune the entire network end-to-end. The trained pricer achieves high accuracy across American and Asian options, with prediction errors concentrated primarily near long maturities and at-the-money strikes, where absolute bid-ask price differences are known to be large. Our method offers an efficient and scalable approach requiring only a single neural network forward pass and naturally improve with additional data. By bridging volatility surface modeling and option pricing in a unified framework, it provides a fast and flexible alternative to traditional numerical approaches for exotic options. ...

September 7, 2025 · 2 min · Research Team

Controllable Generation of Implied Volatility Surfaces with Variational Autoencoders

Controllable Generation of Implied Volatility Surfaces with Variational Autoencoders ArXiv ID: 2509.01743 “View on arXiv” Authors: Jing Wang, Shuaiqiang Liu, Cornelis Vuik Abstract This paper presents a deep generative modeling framework for controllably synthesizing implied volatility surfaces (IVSs) using a variational autoencoder (VAE). Unlike conventional data-driven models, our approach provides explicit control over meaningful shape features (e.g., volatility level, slope, curvature, term-structure) to generate IVSs with desired characteristics. In our framework, financially interpretable shape features are disentangled from residual latent factors. The target features are embedded into the VAE architecture as controllable latent variables, while the residual latent variables capture additional structure to preserve IVS shape diversity. To enable this control, IVS feature values are quantified via regression at an anchor point and incorporated into the decoder to steer generation. Numerical experiments demonstrate that the generative model enables rapid generation of realistic IVSs with desired features rather than arbitrary patterns, and achieves high accuracy across both single- and multi-feature control settings. For market validity, an optional post-generation latent-space repair algorithm adjusts only the residual latent variables to remove occasional violations of static no-arbitrage conditions without altering the specified features. Compared with black-box generators, the framework combines interpretability, controllability, and flexibility for synthetic IVS generation and scenario design. ...

September 1, 2025 · 2 min · Research Team

An Advanced Ensemble Deep Learning Framework for Stock Price Prediction Using VAE, Transformer, and LSTM Model

An Advanced Ensemble Deep Learning Framework for Stock Price Prediction Using VAE, Transformer, and LSTM Model ArXiv ID: 2503.22192 “View on arXiv” Authors: Unknown Abstract This research proposes a cutting-edge ensemble deep learning framework for stock price prediction by combining three advanced neural network architectures: The particular areas of interest for the research include but are not limited to: Variational Autoencoder (VAE), Transformer, and Long Short-Term Memory (LSTM) networks. The presented framework is aimed to substantially utilize the advantages of each model which would allow for achieving the identification of both linear and non-linear relations in stock price movements. To improve the accuracy of its predictions it uses rich set of technical indicators and it scales its predictors based on the current market situation. By trying out the framework on several stock data sets, and benchmarking the results against single models and conventional forecasting, the ensemble method exhibits consistently high accuracy and reliability. The VAE is able to learn linear representation on high-dimensional data while the Transformer outstandingly perform in recognizing long-term patterns on the stock price data. LSTM, based on its characteristics of being a model that can deal with sequences, brings additional improvements to the given framework, especially regarding temporal dynamics and fluctuations. Combined, these components provide exceptional directional performance and a very small disparity in the predicted results. The present solution has given a probable concept that can handle the inherent problem of stock price prediction with high reliability and scalability. Compared to the performance of individual proposals based on the neural network, as well as classical methods, the proposed ensemble framework demonstrates the advantages of combining different architectures. It has a very important application in algorithmic trading, risk analysis, and control and decision-making for finance professions and scholars. ...

March 28, 2025 · 2 min · Research Team

Time-Causal VAE: Robust Financial Time Series Generator

Time-Causal VAE: Robust Financial Time Series Generator ArXiv ID: 2411.02947 “View on arXiv” Authors: Unknown Abstract We build a time-causal variational autoencoder (TC-VAE) for robust generation of financial time series data. Our approach imposes a causality constraint on the encoder and decoder networks, ensuring a causal transport from the real market time series to the fake generated time series. Specifically, we prove that the TC-VAE loss provides an upper bound on the causal Wasserstein distance between market distributions and generated distributions. Consequently, the TC-VAE loss controls the discrepancy between optimal values of various dynamic stochastic optimization problems under real and generated distributions. To further enhance the model’s ability to approximate the latent representation of the real market distribution, we integrate a RealNVP prior into the TC-VAE framework. Finally, extensive numerical experiments show that TC-VAE achieves promising results on both synthetic and real market data. This is done by comparing real and generated distributions according to various statistical distances, demonstrating the effectiveness of the generated data for downstream financial optimization tasks, as well as showcasing that the generated data reproduces stylized facts of real financial market data. ...

November 5, 2024 · 2 min · Research Team