false

Variational Quantum Eigensolver for Real-World Finance: Scalable Solutions for Dynamic Portfolio Optimization Problems

Variational Quantum Eigensolver for Real-World Finance: Scalable Solutions for Dynamic Portfolio Optimization Problems ArXiv ID: 2512.22001 “View on arXiv” Authors: Irene De León, Danel Arias, Manuel Martín-Cordero, María Esperanza Molina, Pablo Serrano, Senaida Hernández-Santana, Miguel Ángel Jiménez Herrera, Joana Fraxanet, Ginés Carrascal, Escolástico Sánchez, Inmaculada Posadillo, Álvaro Nodar Abstract We present a scalable, hardware-aware methodology for extending the Variational Quantum Eigensolver (VQE) to large, realistic Dynamic Portfolio Optimization (DPO) problems. Building on the scaling strategy from our previous work, where we tailored a VQE workflow to both the DPO formulation and the target QPU, we now put forward two significant advances. The first is the implementation of the Ising Sample-based Quantum Configuration Recovery (ISQR) routine, which improves solution quality in Quadratic Unconstrained Binary Optimization problems. The second is the use of the VQE Constrained method to decompose the optimization task, enabling us to handle DPO instances with more variables than the available qubits on current hardware. These advances, which are broadly applicable to other optimization problems, allow us to address a portfolio with a size relevant to the financial industry, consisting of up to 38 assets and covering the full Spanish stock index (IBEX 35). Our results, obtained on a real Quantum Processing Unit (IBM Fez), show that this tailored workflow achieves financial performance on par with classical methods while delivering a broader set of high-quality investment strategies, demonstrating a viable path towards obtaining practical advantage from quantum optimization in real financial applications. ...

December 26, 2025 · 2 min · Research Team

PO-QA: A Framework for Portfolio Optimization using Quantum Algorithms

PO-QA: A Framework for Portfolio Optimization using Quantum Algorithms ArXiv ID: 2407.19857 “View on arXiv” Authors: Unknown Abstract Portfolio Optimization (PO) is a financial problem aiming to maximize the net gains while minimizing the risks in a given investment portfolio. The novelty of Quantum algorithms lies in their acclaimed potential and capability to solve complex problems given the underlying Quantum Computing (QC) infrastructure. Utilizing QC’s applicable strengths to the finance industry’s problems, such as PO, allows us to solve these problems using quantum-based algorithms such as Variational Quantum Eigensolver (VQE) and Quantum Approximate Optimization Algorithm (QAOA). While the Quantum potential for finance is highly impactful, the architecture and composition of the quantum circuits have not yet been properly defined as robust financial frameworks/algorithms as state of the art in present literature for research and design development purposes. In this work, we propose a novel scalable framework, denoted PO-QA, to systematically investigate the variation of quantum parameters (such as rotation blocks, repetitions, and entanglement types) to observe their subtle effect on the overall performance. In our paper, the performance is measured and dictated by convergence to similar ground-state energy values for resultant optimal solutions by each algorithm variation set for QAOA and VQE to the exact eigensolver (classical solution). Our results provide effective insights into comprehending PO from the lens of Quantum Machine Learning in terms of convergence to the classical solution, which is used as a benchmark. This study paves the way for identifying efficient configurations of quantum circuits for solving PO and unveiling their inherent inter-relationships. ...

July 29, 2024 · 2 min · Research Team