false

The Hybrid Forecast of S&P 500 Volatility ensembled from VIX, GARCH and LSTM models

The Hybrid Forecast of S&P 500 Volatility ensembled from VIX, GARCH and LSTM models ArXiv ID: 2407.16780 “View on arXiv” Authors: Unknown Abstract Predicting the S&P 500 index volatility is crucial for investors and financial analysts as it helps assess market risk and make informed investment decisions. Volatility represents the level of uncertainty or risk related to the size of changes in a security’s value, making it an essential indicator for financial planning. This study explores four methods to improve the accuracy of volatility forecasts for the S&P 500: the established GARCH model, known for capturing historical volatility patterns; an LSTM network that utilizes past volatility and log returns; a hybrid LSTM-GARCH model that combines the strengths of both approaches; and an advanced version of the hybrid model that also factors in the VIX index to gauge market sentiment. This analysis is based on a daily dataset that includes S&P 500 and VIX index data, covering the period from January 3, 2000, to December 21, 2023. Through rigorous testing and comparison, we found that machine learning approaches, particularly the hybrid LSTM models, significantly outperform the traditional GARCH model. Including the VIX index in the hybrid model further enhances its forecasting ability by incorporating real-time market sentiment. The results of this study offer valuable insights for achieving more accurate volatility predictions, enabling better risk management and strategic investment decisions in the volatile environment of the S&P 500. ...

July 23, 2024 · 2 min · Research Team

iCOS: Option-Implied COS Method

iCOS: Option-Implied COS Method ArXiv ID: 2309.00943 “View on arXiv” Authors: Unknown Abstract This paper proposes the option-implied Fourier-cosine method, iCOS, for non-parametric estimation of risk-neutral densities, option prices, and option sensitivities. The iCOS method leverages the Fourier-based COS technique, proposed by Fang and Oosterlee (2008), by utilizing the option-implied cosine series coefficients. Notably, this procedure does not rely on any model assumptions about the underlying asset price dynamics, it is fully non-parametric, and it does not involve any numerical optimization. These features make it rather general and computationally appealing. Furthermore, we derive the asymptotic properties of the proposed non-parametric estimators and study their finite-sample behavior in Monte Carlo simulations. Our empirical analysis using S&P 500 index options and Amazon equity options illustrates the effectiveness of the iCOS method in extracting valuable information from option prices under different market conditions. Additionally, we apply our methodology to dissect and quantify observation and discretization errors in the VIX index. ...

September 2, 2023 · 2 min · Research Team