false

Stochastic Volatility Modelling with LSTM Networks: A Hybrid Approach for S&P 500 Index Volatility Forecasting

Stochastic Volatility Modelling with LSTM Networks: A Hybrid Approach for S&P 500 Index Volatility Forecasting ArXiv ID: 2512.12250 “View on arXiv” Authors: Anna Perekhodko, Robert Ślepaczuk Abstract Accurate volatility forecasting is essential in banking, investment, and risk management, because expectations about future market movements directly influence current decisions. This study proposes a hybrid modelling framework that integrates a Stochastic Volatility model with a Long Short Term Memory neural network. The SV model improves statistical precision and captures latent volatility dynamics, especially in response to unforeseen events, while the LSTM network enhances the model’s ability to detect complex nonlinear patterns in financial time series. The forecasting is conducted using daily data from the S and P 500 index, covering the period from January 1 1998 to December 31 2024. A rolling window approach is employed to train the model and generate one step ahead volatility forecasts. The performance of the hybrid SV-LSTM model is evaluated through both statistical testing and investment simulations. The results show that the hybrid approach outperforms both the standalone SV and LSTM models and contributes to the development of volatility modelling techniques, providing a foundation for improving risk assessment and strategic investment planning in the context of the S and P 500. ...

December 13, 2025 · 2 min · Research Team

Fusing Narrative Semantics for Financial Volatility Forecasting

Fusing Narrative Semantics for Financial Volatility Forecasting ArXiv ID: 2510.20699 “View on arXiv” Authors: Yaxuan Kong, Yoontae Hwang, Marcus Kaiser, Chris Vryonides, Roel Oomen, Stefan Zohren Abstract We introduce M2VN: Multi-Modal Volatility Network, a novel deep learning-based framework for financial volatility forecasting that unifies time series features with unstructured news data. M2VN leverages the representational power of deep neural networks to address two key challenges in this domain: (i) aligning and fusing heterogeneous data modalities, numerical financial data and textual information, and (ii) mitigating look-ahead bias that can undermine the validity of financial models. To achieve this, M2VN combines open-source market features with news embeddings generated by Time Machine GPT, a recently introduced point-in-time LLM, ensuring temporal integrity. An auxiliary alignment loss is introduced to enhance the integration of structured and unstructured data within the deep learning architecture. Extensive experiments demonstrate that M2VN consistently outperforms existing baselines, underscoring its practical value for risk management and financial decision-making in dynamic markets. ...

October 23, 2025 · 2 min · Research Team

Improving S&P 500 Volatility Forecasting through Regime-Switching Methods

Improving S&P 500 Volatility Forecasting through Regime-Switching Methods ArXiv ID: 2510.03236 “View on arXiv” Authors: Ava C. Blake, Nivika A. Gandhi, Anurag R. Jakkula Abstract Accurate prediction of financial market volatility is critical for risk management, derivatives pricing, and investment strategy. In this study, we propose a multitude of regime-switching methods to improve the prediction of S&P 500 volatility by capturing structural changes in the market across time. We use eleven years of SPX data, from May 1st, 2014 to May 27th, 2025, to compute daily realized volatility (RV) from 5-minute intraday log returns, adjusted for irregular trading days. To enhance forecast accuracy, we engineered features to capture both historical dynamics and forward-looking market sentiment across regimes. The regime-switching methods include a soft Markov switching algorithm to estimate soft-regime probabilities, a distributional spectral clustering method that uses XGBoost to assign clusters at prediction time, and a coefficient-based soft regime algorithm that extracts HAR coefficients from time segments segmented through the Mood test and clusters through Bayesian GMM for soft regime weights, using XGBoost to predict regime probabilities. Models were evaluated across three time periods–before, during, and after the COVID-19 pandemic. The coefficient-based clustering algorithm outperformed all other models, including the baseline autoregressive model, during all time periods. Additionally, each model was evaluated on its recursive forecasting performance for 5- and 10-day horizons during each time period. The findings of this study demonstrate the value of regime-aware modeling frameworks and soft clustering approaches in improving volatility forecasting, especially during periods of heightened uncertainty and structural change. ...

September 21, 2025 · 2 min · Research Team

Time-Varying Factor-Augmented Models for Volatility Forecasting

Time-Varying Factor-Augmented Models for Volatility Forecasting ArXiv ID: 2508.01880 “View on arXiv” Authors: Duo Zhang, Jiayu Li, Junyi Mo, Elynn Chen Abstract Accurate volatility forecasts are vital in modern finance for risk management, portfolio allocation, and strategic decision-making. However, existing methods face key limitations. Fully multivariate models, while comprehensive, are computationally infeasible for realistic portfolios. Factor models, though efficient, primarily use static factor loadings, failing to capture evolving volatility co-movements when they are most critical. To address these limitations, we propose a novel, model-agnostic Factor-Augmented Volatility Forecast framework. Our approach employs a time-varying factor model to extract a compact set of dynamic, cross-sectional factors from realized volatilities with minimal computational cost. These factors are then integrated into both statistical and AI-based forecasting models, enabling a unified system that jointly models asset-specific dynamics and evolving market-wide co-movements. Our framework demonstrates strong performance across two prominent asset classes-large-cap U.S. technology equities and major cryptocurrencies-over both short-term (1-day) and medium-term (7-day) horizons. Using a suite of linear and non-linear AI-driven models, we consistently observe substantial improvements in predictive accuracy and economic value. Notably, a practical pairs-trading strategy built on our forecasts delivers superior risk-adjusted returns and profitability, particularly under adverse market conditions. ...

August 3, 2025 · 2 min · Research Team

Predicting Realized Variance Out of Sample: Can Anything Beat The Benchmark?

Predicting Realized Variance Out of Sample: Can Anything Beat The Benchmark? ArXiv ID: 2506.07928 “View on arXiv” Authors: Austin Pollok Abstract The discrepancy between realized volatility and the market’s view of volatility has been known to predict individual equity options at the monthly horizon. It is not clear how this predictability depends on a forecast’s ability to predict firm-level volatility. We consider this phenomenon at the daily frequency using high-dimensional machine learning models, as well as low-dimensional factor models. We find that marginal improvements to standard forecast error measurements can lead to economically significant gains in portfolio performance. This makes a case for re-imagining the way we train models that are used to construct portfolios. ...

June 9, 2025 · 2 min · Research Team

Foundation Time-Series AI Model for Realized Volatility Forecasting

Foundation Time-Series AI Model for Realized Volatility Forecasting ArXiv ID: 2505.11163 “View on arXiv” Authors: Anubha Goel, Puneet Pasricha, Martin Magris, Juho Kanniainen Abstract Time series foundation models (FMs) have emerged as a popular paradigm for zero-shot multi-domain forecasting. These models are trained on numerous diverse datasets and claim to be effective forecasters across multiple different time series domains, including financial data. In this study, we evaluate the effectiveness of FMs, specifically the TimesFM model, for volatility forecasting, a core task in financial risk management. We first evaluate TimesFM in its pretrained (zero-shot) form, followed by our custom fine-tuning procedure based on incremental learning, and compare the resulting models against standard econometric benchmarks. While the pretrained model provides a reasonable baseline, our findings show that incremental fine-tuning, which allows the model to adapt to new financial return data over time, is essential for learning volatility patterns effectively. Fine-tuned variants not only improve forecast accuracy but also statistically outperform traditional models, as demonstrated through Diebold-Mariano and Giacomini-White tests. These results highlight the potential of foundation models as scalable and adaptive tools for financial forecasting-capable of delivering strong performance in dynamic market environments when paired with targeted fine-tuning strategies. ...

May 16, 2025 · 2 min · Research Team

Modeling Regime Structure and Informational Drivers of Stock Market Volatility via the Financial Chaos Index

Modeling Regime Structure and Informational Drivers of Stock Market Volatility via the Financial Chaos Index ArXiv ID: 2504.18958 “View on arXiv” Authors: Masoud Ataei Abstract This paper investigates the structural dynamics of stock market volatility through the Financial Chaos Index, a tensor- and eigenvalue-based measure designed to capture realized volatility via mutual fluctuations among asset prices. Motivated by empirical evidence of regime-dependent volatility behavior and perceptual time dilation during financial crises, we develop a regime-switching framework based on the Modified Lognormal Power-Law distribution. Analysis of the FCIX from January 1990 to December 2023 identifies three distinct market regimes, low-chaos, intermediate-chaos, and high-chaos, each characterized by differing levels of systemic stress, statistical dispersion and persistence characteristics. Building upon the segmented regime structure, we further examine the informational forces that shape forward-looking market expectations. Using sentiment-based predictors derived from the Equity Market Volatility tracker, we employ an elastic net regression model to forecast implied volatility, as proxied by the VIX index. Our findings indicate that shifts in macroeconomic, financial, policy, and geopolitical uncertainty exhibit strong predictive power for volatility dynamics across regimes. Together, these results offer a unified empirical perspective on how systemic uncertainty governs both the realized evolution of financial markets and the anticipatory behavior embedded in implied volatility measures. ...

April 26, 2025 · 2 min · Research Team

Deep Reinforcement Learning for Investor-Specific Portfolio Optimization: A Volatility-Guided Asset Selection Approach

Deep Reinforcement Learning for Investor-Specific Portfolio Optimization: A Volatility-Guided Asset Selection Approach ArXiv ID: 2505.03760 “View on arXiv” Authors: Unknown Abstract Portfolio optimization requires dynamic allocation of funds by balancing the risk and return tradeoff under dynamic market conditions. With the recent advancements in AI, Deep Reinforcement Learning (DRL) has gained prominence in providing adaptive and scalable strategies for portfolio optimization. However, the success of these strategies depends not only on their ability to adapt to market dynamics but also on the careful pre-selection of assets that influence overall portfolio performance. Incorporating the investor’s preference in pre-selecting assets for a portfolio is essential in refining their investment strategies. This study proposes a volatility-guided DRL-based portfolio optimization framework that dynamically constructs portfolios based on investors’ risk profiles. The Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model is utilized for volatility forecasting of stocks and categorizes them based on their volatility as aggressive, moderate, and conservative. The DRL agent is then employed to learn an optimal investment policy by interacting with the historical market data. The efficacy of the proposed methodology is established using stocks from the Dow $30$ index. The proposed investor-specific DRL-based portfolios outperformed the baseline strategies by generating consistent risk-adjusted returns. ...

April 20, 2025 · 2 min · Research Team

Unified GARCH-Recurrent Neural Network in Financial Volatility Forecasting

Unified GARCH-Recurrent Neural Network in Financial Volatility Forecasting ArXiv ID: 2504.09380 “View on arXiv” Authors: Unknown Abstract In this study, we develop a unified volatility modeling framework that embeds GARCH dynamics directly within recurrent neural networks. We propose two interpretable hybrid architectures, GARCH-GRU and GARCH-LSTM, that integrate the GARCH(1,1) volatility update into the multiplicative gating structure of GRU and LSTM cells. This unified design preserves economically meaningful GARCH parameters while enabling the networks to learn nonlinear temporal dependencies in financial time series. Comprehensive out-of-sample evaluations across major U.S. equity indices show that both models consistently outperform classical GARCH specifications, pipeline-style hybrids, and neural baselines such as the Transformer across multiple metrics (MSE, MAE, SMAPE, and out-of-sample R\textsuperscript{“2”}). Within this family, the GARCH-GRU achieves the strongest accuracy-efficiency tradeoff, training nearly three times faster than GARCH-LSTM while maintaining comparable or superior forecasting accuracy under normal market conditions and delivering stable and economically plausible parameter estimates. The advantages persist during extreme market turbulence. In the COVID-19 stress period, both architectures retain superior forecasting accuracy and deliver well-calibrated 99 percent Value-at-Risk forecasts, achieving lower violation ratios and competitive Pinball losses relative to all benchmarks. Overall, the findings underscore the effectiveness of embedding GARCH dynamics within recurrent neural architectures, yielding models that are accurate, efficient, interpretable, and robust for real-world risk-aware volatility forecasting. ...

April 13, 2025 · 2 min · Research Team

Dynamic Investment Strategies Through Market Classification and Volatility: A Machine Learning Approach

Dynamic Investment Strategies Through Market Classification and Volatility: A Machine Learning Approach ArXiv ID: 2504.02841 “View on arXiv” Authors: Unknown Abstract This study introduces a dynamic investment framework to enhance portfolio management in volatile markets, offering clear advantages over traditional static strategies. Evaluates four conventional approaches : equal weighted, minimum variance, maximum diversification, and equal risk contribution under dynamic conditions. Using K means clustering, the market is segmented into ten volatility-based states, with transitions forecasted by a Bayesian Markov switching model employing Dirichlet priors and Gibbs sampling. This enables real-time asset allocation adjustments. Tested across two asset sets, the dynamic portfolio consistently achieves significantly higher risk-adjusted returns and substantially higher total returns, outperforming most static methods. By integrating classical optimization with machine learning and Bayesian techniques, this research provides a robust strategy for optimizing investment outcomes in unpredictable market environments. ...

March 19, 2025 · 2 min · Research Team