false

Short-term Volatility Estimation for High Frequency Trades using Gaussian processes (GPs)

Short-term Volatility Estimation for High Frequency Trades using Gaussian processes (GPs) ArXiv ID: 2311.10935 “View on arXiv” Authors: Unknown Abstract The fundamental theorem behind financial markets is that stock prices are intrinsically complex and stochastic. One of the complexities is the volatility associated with stock prices. Volatility is a tendency for prices to change unexpectedly [“1”]. Price volatility is often detrimental to the return economics, and thus, investors should factor it in whenever making investment decisions, choices, and temporal or permanent moves. It is, therefore, crucial to make necessary and regular short and long-term stock price volatility forecasts for the safety and economics of investors returns. These forecasts should be accurate and not misleading. Different models and methods, such as ARCH GARCH models, have been intuitively implemented to make such forecasts. However, such traditional means fail to capture the short-term volatility forecasts effectively. This paper, therefore, investigates and implements a combination of numeric and probabilistic models for short-term volatility and return forecasting for high-frequency trades. The essence is that one-day-ahead volatility forecasts were made with Gaussian Processes (GPs) applied to the outputs of a Numerical market prediction (NMP) model. Firstly, the stock price data from NMP was corrected by a GP. Since it is not easy to set price limits in a market due to its free nature and randomness, a Censored GP was used to model the relationship between the corrected stock prices and returns. Forecasting errors were evaluated using the implied and estimated data. ...

November 18, 2023 · 2 min · Research Team

Combining Deep Learning and GARCH Models for Financial Volatility and Risk Forecasting

Combining Deep Learning and GARCH Models for Financial Volatility and Risk Forecasting ArXiv ID: 2310.01063 “View on arXiv” Authors: Unknown Abstract In this paper, we develop a hybrid approach to forecasting the volatility and risk of financial instruments by combining common econometric GARCH time series models with deep learning neural networks. For the latter, we employ Gated Recurrent Unit (GRU) networks, whereas four different specifications are used as the GARCH component: standard GARCH, EGARCH, GJR-GARCH and APARCH. Models are tested using daily logarithmic returns on the S&P 500 index as well as gold price Bitcoin prices, with the three assets representing quite distinct volatility dynamics. As the main volatility estimator, also underlying the target function of our hybrid models, we use the price-range-based Garman-Klass estimator, modified to incorporate the opening and closing prices. Volatility forecasts resulting from the hybrid models are employed to evaluate the assets’ risk using the Value-at-Risk (VaR) and Expected Shortfall (ES) at two different tolerance levels of 5% and 1%. Gains from combining the GARCH and GRU approaches are discussed in the contexts of both the volatility and risk forecasts. In general, it can be concluded that the hybrid solutions produce more accurate point volatility forecasts, although it does not necessarily translate into superior VaR and ES forecasts. ...

October 2, 2023 · 2 min · Research Team

Global Neural Networks and The Data Scaling Effect in Financial Time Series Forecasting

Global Neural Networks and The Data Scaling Effect in Financial Time Series Forecasting ArXiv ID: 2309.02072 “View on arXiv” Authors: Unknown Abstract Neural networks have revolutionized many empirical fields, yet their application to financial time series forecasting remains controversial. In this study, we demonstrate that the conventional practice of estimating models locally in data-scarce environments may underlie the mixed empirical performance observed in prior work. By focusing on volatility forecasting, we employ a dataset comprising over 10,000 global stocks and implement a global estimation strategy that pools information across cross-sections. Our econometric analysis reveals that forecasting accuracy improves markedly as the training dataset becomes larger and more heterogeneous. Notably, even with as little as 12 months of data, globally trained networks deliver robust predictions for individual stocks and portfolios that are not even in the training dataset. Furthermore, our interpretation of the model dynamics shows that these networks not only capture key stylized facts of volatility but also exhibit resilience to outliers and rapid adaptation to market regime changes. These findings underscore the importance of leveraging extensive and diverse datasets in financial forecasting and advocate for a shift from traditional local training approaches to integrated global estimation methods. ...

September 5, 2023 · 2 min · Research Team

Diffusion Variational Autoencoder for Tackling Stochasticity in Multi-Step Regression Stock Price Prediction

Diffusion Variational Autoencoder for Tackling Stochasticity in Multi-Step Regression Stock Price Prediction ArXiv ID: 2309.00073 “View on arXiv” Authors: Unknown Abstract Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility, allowing financial institutions to price and hedge derivatives, and banks to quantify the risk in their trading books. Additionally, most financial regulators also require a liquidity horizon of several days for institutional investors to exit their risky assets, in order to not materially affect market prices. However, the task of multi-step stock price prediction is challenging, given the highly stochastic nature of stock data. Current solutions to tackle this problem are mostly designed for single-step, classification-based predictions, and are limited to low representation expressiveness. The problem also gets progressively harder with the introduction of the target price sequence, which also contains stochastic noise and reduces generalizability at test-time. To tackle these issues, we combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction through a stochastic generative process. The hierarchical VAE allows us to learn the complex and low-level latent variables for stock prediction, while the diffusion probabilistic model trains the predictor to handle stock price stochasticity by progressively adding random noise to the stock data. Our Diffusion-VAE (D-Va) model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance. More importantly, the multi-step outputs can also allow us to form a stock portfolio over the prediction length. We demonstrate the effectiveness of our model outputs in the portfolio investment task through the Sharpe ratio metric and highlight the importance of dealing with different types of prediction uncertainties. ...

August 18, 2023 · 2 min · Research Team

Comparing Deep Learning Models for the Task of Volatility Prediction Using Multivariate Data

Comparing Deep Learning Models for the Task of Volatility Prediction Using Multivariate Data ArXiv ID: 2306.12446 “View on arXiv” Authors: Unknown Abstract This study aims to compare multiple deep learning-based forecasters for the task of predicting volatility using multivariate data. The paper evaluates a range of models, starting from simpler and shallower ones and progressing to deeper and more complex architectures. Additionally, the performance of these models is compared against naive predictions and variations of classical GARCH models. The prediction of volatility for five assets, namely S&P500, NASDAQ100, gold, silver, and oil, is specifically addressed using GARCH models, Multi-Layer Perceptrons, Recurrent Neural Networks, Temporal Convolutional Networks, and the Temporal Fusion Transformer. In the majority of cases, the Temporal Fusion Transformer, followed by variants of the Temporal Convolutional Network, outperformed classical approaches and shallow networks. These experiments were repeated, and the differences observed between the competing models were found to be statistically significant, thus providing strong encouragement for their practical application. ...

June 20, 2023 · 2 min · Research Team

Constructing Time-Series Momentum Portfolios with Deep Multi-Task Learning

Constructing Time-Series Momentum Portfolios with Deep Multi-Task Learning ArXiv ID: 2306.13661 “View on arXiv” Authors: Unknown Abstract A diversified risk-adjusted time-series momentum (TSMOM) portfolio can deliver substantial abnormal returns and offer some degree of tail risk protection during extreme market events. The performance of existing TSMOM strategies, however, relies not only on the quality of the momentum signal but also on the efficacy of the volatility estimator. Yet many of the existing studies have always considered these two factors to be independent. Inspired by recent progress in Multi-Task Learning (MTL), we present a new approach using MTL in a deep neural network architecture that jointly learns portfolio construction and various auxiliary tasks related to volatility, such as forecasting realized volatility as measured by different volatility estimators. Through backtesting from January 2000 to December 2020 on a diversified portfolio of continuous futures contracts, we demonstrate that even after accounting for transaction costs of up to 3 basis points, our approach outperforms existing TSMOM strategies. Moreover, experiments confirm that adding auxiliary tasks indeed boosts the portfolio’s performance. These findings demonstrate that MTL can be a powerful tool in finance. ...

June 8, 2023 · 2 min · Research Team