false

RegimeFolio: A Regime Aware ML System for Sectoral Portfolio Optimization in Dynamic Markets

RegimeFolio: A Regime Aware ML System for Sectoral Portfolio Optimization in Dynamic Markets ArXiv ID: 2510.14986 “View on arXiv” Authors: Yiyao Zhang, Diksha Goel, Hussain Ahmad, Claudia Szabo Abstract Financial markets are inherently non-stationary, with shifting volatility regimes that alter asset co-movements and return distributions. Standard portfolio optimization methods, typically built on stationarity or regime-agnostic assumptions, struggle to adapt to such changes. To address these challenges, we propose RegimeFolio, a novel regime-aware and sector-specialized framework that, unlike existing regime-agnostic models such as DeepVol and DRL optimizers, integrates explicit volatility regime segmentation with sector-specific ensemble forecasting and adaptive mean-variance allocation. This modular architecture ensures forecasts and portfolio decisions remain aligned with current market conditions, enhancing robustness and interpretability in dynamic markets. RegimeFolio combines three components: (i) an interpretable VIX-based classifier for market regime detection; (ii) regime and sector-specific ensemble learners (Random Forest, Gradient Boosting) to capture conditional return structures; and (iii) a dynamic mean-variance optimizer with shrinkage-regularized covariance estimates for regime-aware allocation. We evaluate RegimeFolio on 34 large cap U.S. equities from 2020 to 2024. The framework achieves a cumulative return of 137 percent, a Sharpe ratio of 1.17, a 12 percent lower maximum drawdown, and a 15 to 20 percent improvement in forecast accuracy compared to conventional and advanced machine learning benchmarks. These results show that explicitly modeling volatility regimes in predictive learning and portfolio allocation enhances robustness and leads to more dependable decision-making in real markets. ...

September 14, 2025 · 2 min · Research Team

ARL-Based Multi-Action Market Making with Hawkes Processes and Variable Volatility

ARL-Based Multi-Action Market Making with Hawkes Processes and Variable Volatility ArXiv ID: 2508.16589 “View on arXiv” Authors: Ziyi Wang, Carmine Ventre, Maria Polukarov Abstract We advance market-making strategies by integrating Adversarial Reinforcement Learning (ARL), Hawkes Processes, and variable volatility levels while also expanding the action space available to market makers (MMs). To enhance the adaptability and robustness of these strategies – which can quote always, quote only on one side of the market or not quote at all – we shift from the commonly used Poisson process to the Hawkes process, which better captures real market dynamics and self-exciting behaviors. We then train and evaluate strategies under volatility levels of 2 and 200. Our findings show that the 4-action MM trained in a low-volatility environment effectively adapts to high-volatility conditions, maintaining stable performance and providing two-sided quotes at least 92% of the time. This indicates that incorporating flexible quoting mechanisms and realistic market simulations significantly enhances the effectiveness of market-making strategies. ...

August 7, 2025 · 2 min · Research Team

Adaptive Market Intelligence: A Mixture of Experts Framework for Volatility-Sensitive Stock Forecasting

Adaptive Market Intelligence: A Mixture of Experts Framework for Volatility-Sensitive Stock Forecasting ArXiv ID: 2508.02686 “View on arXiv” Authors: Diego Vallarino Abstract This study develops and empirically validates a Mixture of Experts (MoE) framework for stock price prediction across heterogeneous volatility regimes using real market data. The proposed model combines a Recurrent Neural Network (RNN) optimized for high-volatility stocks with a linear regression model tailored to stable equities. A volatility-aware gating mechanism dynamically weights the contributions of each expert based on asset classification. Using a dataset of 30 publicly traded U.S. stocks spanning diverse sectors, the MoE approach consistently outperforms both standalone models. Specifically, it achieves up to 33% improvement in MSE for volatile assets and 28% for stable assets relative to their respective baselines. Stratified evaluation across volatility classes demonstrates the model’s ability to adapt complexity to underlying market dynamics. These results confirm that no single model suffices across market regimes and highlight the advantage of adaptive architectures in financial prediction. Future work should explore real-time gate learning, dynamic volatility segmentation, and applications to portfolio optimization. ...

July 22, 2025 · 2 min · Research Team