false

LEMs: A Primer On Large Execution Models

LEMs: A Primer On Large Execution Models ArXiv ID: 2509.25211 “View on arXiv” Authors: Remi Genet, Hugo Inzirillo Abstract This paper introduces Large Execution Models (LEMs), a novel deep learning framework that extends transformer-based architectures to address complex execution problems with flexible time boundaries and multiple execution constraints. Building upon recent advances in neural VWAP execution strategies, LEMs generalize the approach from fixed-duration orders to scenarios where execution duration is bounded between minimum and maximum time horizons, similar to share buyback contract structures. The proposed architecture decouples market information processing from execution allocation decisions: a common feature extraction pipeline using Temporal Kolmogorov-Arnold Networks (TKANs), Variable Selection Networks (VSNs), and multi-head attention mechanisms processes market data to create informational context, while independent allocation networks handle the specific execution logic for different scenarios (fixed quantity vs. fixed notional, buy vs. sell orders). This architectural separation enables a unified model to handle diverse execution objectives while leveraging shared market understanding across scenarios. Through comprehensive empirical evaluation on intraday cryptocurrency markets and multi-day equity trading using DOW Jones constituents, we demonstrate that LEMs achieve superior execution performance compared to traditional benchmarks by dynamically optimizing execution paths within flexible time constraints. The unified model architecture enables deployment across different execution scenarios (buy/sell orders, varying duration boundaries, volume/notional targets) through a single framework, providing significant operational advantages over asset-specific approaches. ...

September 21, 2025 · 2 min · Research Team

VWAP Execution with Signature-Enhanced Transformers: A Multi-Asset Learning Approach

VWAP Execution with Signature-Enhanced Transformers: A Multi-Asset Learning Approach ArXiv ID: 2503.02680 “View on arXiv” Authors: Unknown Abstract In this paper I propose a novel approach to Volume Weighted Average Price (VWAP) execution that addresses two key practical challenges: the need for asset-specific model training and the capture of complex temporal dependencies. Building upon my recent work in dynamic VWAP execution arXiv:2502.18177, I demonstrate that a single neural network trained across multiple assets can achieve performance comparable to or better than traditional asset-specific models. The proposed architecture combines a transformer-based design inspired by arXiv:2406.02486 with path signatures for capturing geometric features of price-volume trajectories, as in arXiv:2406.17890. The empirical analysis, conducted on hourly cryptocurrency trading data from 80 trading pairs, shows that the globally-fitted model with signature features (GFT-Sig) achieves superior performance in both absolute and quadratic VWAP loss metrics compared to asset-specific approaches. Notably, these improvements persist for out-of-sample assets, demonstrating the model’s ability to generalize across different market conditions. The results suggest that combining global parameter sharing with signature-based feature extraction provides a scalable and robust approach to VWAP execution, offering significant practical advantages over traditional asset-specific implementations. ...

March 4, 2025 · 2 min · Research Team

Recurrent Neural Networks for Dynamic VWAP Execution: Adaptive Trading Strategies with Temporal Kolmogorov-Arnold Networks

Recurrent Neural Networks for Dynamic VWAP Execution: Adaptive Trading Strategies with Temporal Kolmogorov-Arnold Networks ArXiv ID: 2502.18177 “View on arXiv” Authors: Unknown Abstract The execution of Volume Weighted Average Price (VWAP) orders remains a critical challenge in modern financial markets, particularly as trading volumes and market complexity continue to increase. In my previous work arXiv:2502.13722, I introduced a novel deep learning approach that demonstrated significant improvements over traditional VWAP execution methods by directly optimizing the execution problem rather than relying on volume curve predictions. However, that model was static because it employed the fully linear approach described in arXiv:2410.21448, which is not designed for dynamic adjustment. This paper extends that foundation by developing a dynamic neural VWAP framework that adapts to evolving market conditions in real time. We introduce two key innovations: first, the integration of recurrent neural networks to capture complex temporal dependencies in market dynamics, and second, a sophisticated dynamic adjustment mechanism that continuously optimizes execution decisions based on market feedback. The empirical analysis, conducted across five major cryptocurrency markets, demonstrates that this dynamic approach achieves substantial improvements over both traditional methods and our previous static implementation, with execution performance gains of 10 to 15% in liquid markets and consistent outperformance across varying conditions. These results suggest that adaptive neural architectures can effectively address the challenges of modern VWAP execution while maintaining computational efficiency suitable for practical deployment. ...

February 25, 2025 · 2 min · Research Team